HDU 3669 [Cross the Wall] DP斜率优化
问题分析
首先,如果一个人的\(w\)和\(h\)均小于另一个人,那么这个人显然可以被省略。如果我们将剩下的人按\(w[i]\)递增排序,那么\(h[i]\)就是递减。
之后我们考虑DP。
我们设\(f[i][j]\)为到第\(i\)个人,打了\(j\)个洞的花费。于是我们可以得到如下DP过程:
for( LL i = 1; i <= N; ++i ) F[ i ][ 1 ] = w[ i ] * h[ 1 ];
for( LL j = 2; j <= K; ++j )
for( LL i = j; i <= N; ++i ) {
f[ i ][ j ] = INF;
for( LL k = j - 1; k < i; ++k )
F[ i ][ j ] = min( F[ i ][ j ], F[ k ][ j - 1 ] + w[ i ] * h[ k + 1 ] );
}
Ans = F[ N ][ K ];
我们将第二维滚动掉,节省空间:
for( LL i = 1; i <= N; ++i ) F1[ i ] = w[ i ] * h[ 1 ];
for( LL j = 2; j <= K; ++j ) {
for( LL i = j; i <= N; ++i ) {
F2[ i ] = INF;
for( LL k = j - 1; k < i; ++k )
F2[ i ] = min( F2[ i ], F1[ k ] + w[ i ] * h[ k + 1 ] );
}
memcpy( F1, F2, sizeof( F2 ) );
}
Ans = F1[ N ][ K ];
再考虑优化最里面一层循环:
设\(l>k\)且从\(l\)转移优于从\(k\)转移,那么就有
\[F1[l]+w[i]*h[l+1]<F1[k]+w[i]*h[k+1]
\]
化简,得
\[\frac{F_1[l]-F_1[k]}{h[k+1]-h[l+1]}<w[i]
\]
然后就可以斜率优化了。具体的斜率优化讲解可以看这里。
参考程序
#include <bits/stdc++.h>
#define LL long long
using namespace std;
const LL INF = 1e18 + 10;
const LL MaxN = 50010, MaxK = 110;
LL N, K;
struct CitizenAttribute {
LL Width, Hight;
CitizenAttribute( LL Width_ = 0, LL Hight_ = 0 ) {
Width = Width_; Hight = Hight_; return;
}
bool operator < ( const CitizenAttribute Other ) const {
return Width < Other.Width || Width == Other.Width && Hight > Other.Hight;
}
};
CitizenAttribute Citizens[ MaxN ];
bool IsSkiped[ MaxN ];
LL L, R, Queue[ MaxN ], F1[ MaxN ], F2[ MaxN ];
LL NumAfterSkip;
inline void Clear() {
memset( Citizens, 0, sizeof( Citizens ) );
memset( IsSkiped, false, sizeof( IsSkiped ) );
memset( F1, 0, sizeof( F1 ) );
return;
}
inline void SkipContainedCitizen() {
CitizenAttribute Last = CitizenAttribute( 0, 0 );
for( LL i = N; i >= 1; --i )
if( Citizens[ i ].Hight <= Last.Hight ) IsSkiped[ i ] = true;
else Last = Citizens[ i ];
NumAfterSkip = 0;
for( LL i = 1; i <= N; ++i )
if( !IsSkiped[ i ] )
Citizens[ ++NumAfterSkip ] = Citizens[ i ];
return;
}
inline bool Less( LL i, LL j, LL Limit ) {
LL DeltaY = F1[ j ] - F1[ i ];
LL DeltaX = Citizens[ i + 1 ].Hight - Citizens[ j + 1 ].Hight;
return DeltaY <= Limit * DeltaX;
}
inline bool Greater( LL i, LL j, LL k ) {
LL DeltaY1 = F1[ j ] - F1[ i ];
LL DeltaY2 = F1[ k ] - F1[ j ];
LL DeltaX1 = Citizens[ i + 1 ].Hight - Citizens[ j + 1 ].Hight;
LL DeltaX2 = Citizens[ j + 1 ].Hight - Citizens[ k + 1 ].Hight;
return DeltaY1 * DeltaX2 >= DeltaY2 * DeltaX1;
}
void Work() {
LL Ans = INF;
Clear();
for( LL i = 1; i <= N; ++i )
scanf( "%lld%lld", &Citizens[ i ].Width, &Citizens[ i ].Hight );
sort( Citizens + 1, Citizens + N + 1 );
SkipContainedCitizen();
for( LL i = 1; i <= NumAfterSkip; ++i ) F1[ i ] = Citizens[ i ].Width * Citizens[ 1 ].Hight;
Ans = min( Ans, F1[ NumAfterSkip ] );
for( LL j = 2; j <= K && j <= NumAfterSkip; ++j ) {
memset( F2, 0, sizeof( F2 ) );
L = R = 0; memset( Queue, 0, sizeof( Queue ) );
Queue[ R++ ] = j - 1;
for( LL i = j; i <= NumAfterSkip; ++i ) {
while( L + 1 < R && Less( Queue[ L ], Queue[ L + 1 ], Citizens[ i ].Width ) )
++L;
F2[ i ] = F1[ Queue[ L ] ] + Citizens[ Queue[ L ] + 1 ].Hight * Citizens[ i ].Width;
while( L + 1 < R && Greater( Queue[ R - 2 ], Queue[ R - 1 ], i ) )
--R;
Queue[ R++ ] = i;
}
memcpy( F1, F2, sizeof( F2 ) );
Ans = min( Ans, F1[ NumAfterSkip ] );
}
printf( "%lld\n", Ans );
return;
}
int main() {
while( scanf( "%lld%lld", &N, &K ) == 2 )
Work();
return 0;
}