非旋treap
核心思想
主要的思想与treap是一样的。通过让二叉查找树同时满足堆(随机参数)的性质来防止深度过大。与普通treap不同的是非旋treap通过树的分裂与合并来实现这一点,而非旋转。
核心操作
Update
如果是要实现类似于 set<int>
的功能,可以不用这一部分。本文以 loj104 为例,我们需要在这里更新节点的 \(Size\) 信息。
void node::Update()
{
Size = Count;
if (LeftChild != NULL)
Size += LeftChild->Size;
if (RightChild != NULL)
Size += RightChild->Size;
return;
}
Split
将一个非旋treap按关键字 \(x\) 分成两个,其中一个树中关键字大小不超过 \(b\) ,另一个树中关键字严格大于 \(x\)。
std::pair<node *, node *> Split(node *Rt, int x)
{
if (Rt == NULL)
return std::pair<node *, node *>(NULL, NULL);
if (x < Rt->Value)
{
std::pair<node *, node *> Temp = Split(Rt->LeftChild, x);
Rt->LeftChild = Temp.second;
Rt->Update();
return std::pair<node *, node *>(Temp.first, Rt);
}
else
{
std::pair<node *, node *> Temp = Split(Rt->RightChild, x);
Rt->RightChild = Temp.first;
Rt->Update();
return std::pair<node *, node *>(Rt, Temp.second);
}
}
Merge
合并两棵非旋treap,其中一棵中关键字严格小于另外一棵,使得新的非旋treap同时满足二叉查找树和堆的性质。
可以递归实现,每次合并使随机的 priority 小的(或大的)在上即可。
node *Merge(node *l, node *r)
{
if (l == NULL)
return r;
if (r == NULL)
return l;
if (l->Priority <= r->Priority)
{
l->RightChild = Merge(l->RightChild, r);
l->Update();
return l;
}
else
{
r->LeftChild = Merge(l, r->LeftChild);
r->Update();
return r;
}
}
其他操作
Insert & Delete
首先查询是否需要改变节点的数量。如果不需要,直接修改 Size 即可。否则:
Insert: 将树分成 小于 \(x\) 和 大于 \(x\) 两部分,然后合并这两棵树和新节点 \(x\) 。
Delete:将树分成 小于 \(x\) 、等于 \(x\) 和大于 \(x\) 三个部分,然后删除等于 \(x\) 的部分并且合并 小于 \(x\) 的部分和 大于 \(s\) 的部分。
void Insert(int x)
{
node *T = Find(x);
if (T != NULL)
{
Update(x, 1);
return;
}
std::pair<node *, node *> Temp = Split(Root, x);
Temp.first = Merge(Temp.first, new node(x));
Root = Merge(Temp.first, Temp.second);
return;
}
int Delete(int x)
{
node *T = Find(x);
if (T == NULL)
return 1;
if (T->Count > 1)
{
Update(x, -1);
return 0;
}
std::pair<node *, node *> Temp1 = Split(Root, x - 1);
std::pair<node *, node *> Temp2 = Split(Temp1.second, x);
delete Temp2.first;
Root = Merge(Temp1.first, Temp2.second);
return 0;
}
Rank & Query & Precursor & Successor
这些就和一般的二叉查找树差不多,就不赘述了。
参考程序
#include <cstdio>
#include <algorithm>
const int INF = 1e7 + 10;
struct node
{
int Value, Priority, Size, Count;
node *LeftChild, *RightChild;
node()
{
Value = Priority = Size = Count = 0;
LeftChild = RightChild = NULL;
return;
}
node(int _Value)
{
Value = _Value;
Priority = rand();
Size = Count = 1;
LeftChild = RightChild = NULL;
return;
}
inline void Update();
};
struct noneRotateTreap
{
node *Root;
noneRotateTreap()
{
Root = NULL;
return;
}
inline std::pair<node *, node *> Split(node *Rt, int x);
inline node *Merge(node *x, node *y);
inline node *Find(int x);
inline void Update(int x, int State);
inline void Insert(int x);
inline int Delete(int x);
inline int Rank(int x);
inline int Query(int x);
inline int Precursor(int x);
inline int Successor(int x);
};
noneRotateTreap NoneRotateTreap;
int main()
{
srand((unsigned long long)"非旋treap呀");
int n, Opt, x;
scanf("%d", &n);
for (; n; --n)
{
scanf("%d%d", &Opt, &x);
switch (Opt)
{
case 1:
NoneRotateTreap.Insert(x);
break;
case 2:
NoneRotateTreap.Delete(x);
break;
case 3:
printf("%d\n", NoneRotateTreap.Rank(x));
break;
case 4:
printf("%d\n", NoneRotateTreap.Query(x));
break;
case 5:
printf("%d\n", NoneRotateTreap.Precursor(x));
break;
case 6:
printf("%d\n", NoneRotateTreap.Successor(x));
default:
break;
}
}
return 0;
}
inline void node::Update()
{
Size = Count;
if (LeftChild != NULL)
Size += LeftChild->Size;
if (RightChild != NULL)
Size += RightChild->Size;
return;
}
inline std::pair<node *, node *> noneRotateTreap::Split(node *Rt, int x)
{
if (Rt == NULL)
return std::pair<node *, node *>(NULL, NULL);
if (x < Rt->Value)
{
std::pair<node *, node *> Temp = Split(Rt->LeftChild, x);
Rt->LeftChild = Temp.second;
Rt->Update();
return std::pair<node *, node *>(Temp.first, Rt);
}
else
{
std::pair<node *, node *> Temp = Split(Rt->RightChild, x);
Rt->RightChild = Temp.first;
Rt->Update();
return std::pair<node *, node *>(Rt, Temp.second);
}
}
inline node *noneRotateTreap::Merge(node *l, node *r)
{
if (l == NULL)
return r;
if (r == NULL)
return l;
if (l->Priority <= r->Priority)
{
l->RightChild = Merge(l->RightChild, r);
l->Update();
return l;
}
else
{
r->LeftChild = Merge(l, r->LeftChild);
r->Update();
return r;
}
}
inline node *noneRotateTreap::Find(int x)
{
node *Rt = Root;
while (Rt)
{
if (Rt->Value == x)
return Rt;
if (x < Rt->Value)
Rt = Rt->LeftChild;
else
Rt = Rt->RightChild;
}
return NULL;
}
inline void noneRotateTreap::Update(int x, int State)
{
node *Rt = Root;
while (Rt)
{
Rt->Size += State;
if (Rt->Value == x)
{
Rt->Count += State;
return;
}
if (x < Rt->Value)
Rt = Rt->LeftChild;
else
Rt = Rt->RightChild;
}
return;
}
inline void noneRotateTreap::Insert(int x)
{
node *T = Find(x);
if (T != NULL)
{
Update(x, 1);
return;
}
std::pair<node *, node *> Temp = Split(Root, x);
Temp.first = Merge(Temp.first, new node(x));
Root = Merge(Temp.first, Temp.second);
return;
}
inline int noneRotateTreap::Delete(int x)
{
node *T = Find(x);
if (T == NULL)
return 1;
if (T->Count > 1)
{
Update(x, -1);
return 0;
}
std::pair<node *, node *> Temp1 = Split(Root, x - 1);
std::pair<node *, node *> Temp2 = Split(Temp1.second, x);
delete Temp2.first;
Root = Merge(Temp1.first, Temp2.second);
return 0;
}
#define LCS (Rt->LeftChild ? Rt->LeftChild->Size : 0)
inline int noneRotateTreap::Rank(int x)
{
node *Rt = Root;
int Ans = 0;
while (Rt)
{
if (Rt->Value == x)
return Ans + LCS + 1;
if (x < Rt->Value)
Rt = Rt->LeftChild;
else
Ans += LCS + Rt->Count, Rt = Rt->RightChild;
}
return Ans;
}
inline int noneRotateTreap::Query(int x)
{
node *Rt = Root;
while (Rt)
{
if (LCS < x && x <= LCS + Rt->Count)
return Rt->Value;
if (x <= LCS)
Rt = Rt->LeftChild;
else
x -= LCS + Rt->Count, Rt = Rt->RightChild;
}
return 0;
}
#undef LCS
inline int noneRotateTreap::Precursor(int x)
{
int Ans = INF;
node *Rt = Root;
while (Rt)
{
if (Rt->Value < x)
Ans = Rt->Value, Rt = Rt->RightChild;
else
Rt = Rt->LeftChild;
}
return Ans;
}
inline int noneRotateTreap::Successor(int x)
{
int Ans = -INF;
node *Rt = Root;
while (Rt)
{
if (Rt->Value > x)
Ans = Rt->Value, Rt = Rt->LeftChild;
else
Rt = Rt->RightChild;
}
return Ans;
}