概率论(离散型)极简入门
古典概型
定义
m:A包含的基本事件数。
n:总基本事件数
基本事件:样本空间中不可再分的最小事件。
符号
\(\Omega\) 表示样本空间。\(\Phi\) 表示不可能事件。\(\overline {A}\) 表示 \(A\) 事件的对立面, \(AB\) 表示事件 \(A\) 和 \(B\) 同时发生。
几个公式
说明:事件\(A\)发生的概率就是\(1-\)事件\(A\)的对立事件发生的概率。
说明:事件\(A\)或\(B\)发生的概率是事件\(A\)发生的概率加上事件\(B\)发生的概率减去事件\(A\)和\(B\)同时发生的概率。(容斥原理)
说明:为上一条的推广,同样是容斥原理。
如果\(A\)与\(B\)互不相容(\(AB=\Phi\)),那么\(P(A+B)=P(A)+P(B)\)
说明:为第一条的特殊情况。因为\(A\)与\(B\)互不相容,所以\(P(AB)\)为\(0\)。
如果\(A\)与\(B\)相互独立,那么\(P(AB)=P(A)\times P(B)\)
条件概率
\(P(B|A)\)表示\(A\)发生的情况下,\(B\)发生的概率。
显然,我们有:
等价于
如果\(A\)与\(B\)相互独立,那么
全概率公式
完备事件组
完备事件组是这样一组事件\(A_i(i=1...n)\):
简而言之,完备事件组就是对样本空间的一个划分。
全概率公式
在完备事件组\(A_i\)下,有全概率公式:
感性理解即可。
逆概率公式
这个感觉不好理解,但是挺有用的。
伯努利概型
\(n\)次独立重复实验,如果事件\(A\)发生的概率为\(p\),那么事件\(A\)恰好发生\(k\)次的概率是
随机变量
我们给一个事件\(\omega \in \Omega\)赋值为\(X(\omega)\)(简写为\(X\)),那么\(X\)就是随机变量。
分布列
\(X\) | \(x_1\) | \(x_2\) | \(\cdots\) | \(x_n\) |
---|---|---|---|---|
\(P\) | \(p_1\) | \(p_2\) | \(\cdots\) | \(p_n\) |
分布律
\(P(X=x_i)=p_i\)
显然,有\(p_i\geqslant 0, \sum p_i=1\)。
分布函数
一些离散变量的分布
二项分布\(X\sim B(n,p)\)
两点分布:两点分布是二项分布\(n =1\)的情况。
泊松分布\(X\sim \Pi(\lambda)\)
泊松分布适用于稀疏概率事件。
几何分布\(X\sim G(p)\)
实验恰好在第\(k\)次第一次成功的概率(前\(k-1\)次失败)。
超几何分布\(X\sim H(n, N_1, N)\)
超几何分布可以这样理解:从\(N\)个黑色(\(N_1\)个)或白色的球中随机抽取\(n\)个球恰有\(k\)个为黑的概率。当\(N\gg n\)时,近似于二项分布。
随机变量的数字特征
数学期望
由于数学期望涉及级数的问题,这里不过多解释。
二项分布\(E(x)=np\)
两点分布\(E(x)=p\)
泊松分布\(E(x)=\lambda\)
几何分布\(E(x)=\frac{1}{p}\)
期望的一些公式:
如果\(x\),\(y\)独立,还有\(E(xy)=E(x)E(y)\)
方差
方差\(D(x)=E[(x-E(x))^2]=E(x^2)-(E(x))^2=\sum x_i^2p_i - (\sum x_i p_i) ^2\)
二项分布\(D_x=np(1-p)\)
泊松分布\(D_x=\lambda\)
几何分布\(D_x=\frac{1-p}{p^2}\)
方差性质:\(D(c)=0\),\(D(x+c)=D(x)\),\(D(cx)=c^2D(x)\),\(D(x\pm y)=D(x)+D(y)\),\(D(x)=0\Leftrightarrow P(x=c)=1\)