CodeForces451E Devu and Flowers
问题分析
没有想到母函数的做法……
其实直接看题思路挺简单的。发现如果每种花都有无限多的话,问题变得十分简单,答案就是\(s+n-1\choose n - 1\)。然后发现\(n\)只有\(20\),于是大力容斥一波就完事了。
参考代码
#include <cstdio>
const long long Max_n = 30;
const long long Mod = 1000000007;
long long n, s, f[ Max_n ];
void Exgcd( long long a, long long b, long long & x, long long & y ) {
if( b == 0LL ) { x = 1LL; y = 0LL; return; }
Exgcd( b, a % b, y, x );
y -= a / b * x;
return;
}
long long Inv( long long a ) {
long long x, y;
Exgcd( a, Mod, x, y );
if( x < 0 ) x += Mod;
return x;
}
long long C( long long n, long long m ) {
long long Ans = 1;
for( long long i = 1; i <= m; ++i ) Ans = Ans * ( ( n - i + 1 ) % Mod ) % Mod;
for( long long i = 1; i <= m; ++i ) Ans = Ans * Inv( i ) % Mod;
return Ans;
}
int main() {
scanf( "%lld%lld", &n, &s );
for( long long i = 1; i <= n; ++i ) scanf( "%lld", &f[ i ] );
long long Ans = 0;
for( long long i = 0; i < 1 << n; ++i ) {
long long t, Cnt = 0, Pos = s;
for( t = i; t; t >>= 1 ) if( t & 1 ) ++Cnt;
for( long long j = 1, t = i; t; t >>= 1, ++j ) if( t & 1 ) Pos -= f[ j ] + 1;
if( Pos < 0 ) continue;
Ans += ( Cnt & 1 ) ? -C( Pos + n - 1, n - 1 ) : C( Pos + n - 1, n - 1 );
Ans = ( Ans + Mod ) % Mod;
}
printf( "%lld\n", Ans );
return 0;
}