YY的GCD【luoguP2257】
题目大意
有至多\(10000\)组询问,问\(1 < i \leqslant N \leqslant 10000000, 1 < j \leqslant M \leqslant 10000000\),并且\(gcd(i, j)\)为质数的有多少对。
解题思路
为了方便描述,我们定义\([]\),当\([]\)中表达式为真时为\(1\),否则为\(0\)。同时定义\(Prime\)为素数集合。
下面的讨论中,我们不妨设\(N \leqslant M\)。
我们设
\[f(d)=\sum_{i=1}^M\sum_{j=1}^N[gcd( i, j ) \in Prime]\\
F(n)=\sum_{n|d}^Nf(d)=\lfloor\frac{M}{n}\rfloor\lfloor\frac{N}{n}\rfloor
\]
即,\(f(d)\)是当\(gcd=d\)时的答案数,\(F(n)\)是当\(gcd\)为\(n\)的倍数时的答案数。
我们发现,求\(F(n)\)十分的方便,于是我们考虑能否通过\(F(n)\)将\(f(n)\)表述出来。
由莫比乌斯反演,得
\[f(n)=\sum_{n|d}\mu(\frac{d}{n})F(d)
\]
其中\(\mu\)是莫比乌斯函数。
那么答案就可以表示为
\[\begin{aligned}
Ans & = \sum_{n\in Prime}^Nf(n)\\
& = \sum_{n\in Prime}^N\sum_{n|d}\mu(\frac{d}{n})F(d)\\
& = \sum_{n\in Prime}^N\sum_{n|d}\mu(\frac{d}{n})\lfloor\frac{N}{d}\rfloor\lfloor\frac{M}{d}\rfloor\\
& = \sum_{d}^N\sum_{n|d,n\in Prime}\mu(\frac{d}{n})\lfloor\frac{N}{d}\rfloor\lfloor\frac{M}{d}\rfloor\\
& = \sum_{d}^N\lfloor\frac{N}{d}\rfloor\lfloor\frac{M}{d}\rfloor\sum_{n|d, n\in Prime} \mu(\frac{d}{n})
\end{aligned}
\]
通过稍微修改线筛,我们可以与处理出\(\mu\),然后可以预处理出所有的\(\sum_{n|d,n\in Prime}\mu(\frac{d}{n})\)。最后再整除分块统计答案就可以了。
参考程序
程序中,mu即为\(\mu\),\(Sum\)为前缀和。
#include <bits/stdc++.h>
using namespace std;
const int MaxN = 10000010;
int Mu[ MaxN ], Vis[ MaxN ];
long long Sum[ MaxN ];
int Num, Prime[ 1000010 ];
void Init() {
Mu[ 1 ] = 1;
for( int i = 2; i <= MaxN; ++i ) {
if( !Vis[ i ] ) Prime[ ++Num ] = i, Mu[ i ] = -1;
for( int j = 1; j <= Num && ( long long ) i * Prime[ j ] <= ( long long ) MaxN; ++j ) {
Vis[ i * Prime[ j ] ] = 1;
if( i % Prime[ j ] == 0 ) break;
Mu[ i * Prime[ j ] ] = - Mu[ i ];
}
}
for( int i = 1; i <= MaxN; ++i )
for( int j = 1; j <= Num && ( long long ) i * Prime[ j ] <= ( long long ) MaxN; ++j )
Sum[ i * Prime[ j ] ] += Mu[ i ];
for( int i = 2; i <= MaxN; ++i ) Sum[ i ] += Sum[ i - 1 ];
return;
}
void Work() {
int N, M;
scanf( "%d%d", &N, &M );
if( N > M ) swap( N, M );
long long Ans = 0;
for( int x = 1, y; x <= N; x = y + 1 ) {
y = min( N / ( N / x ), M / ( M / x ) );
Ans += 1LL * ( N / x ) * ( M / x ) * ( Sum[ y ] - Sum[ x - 1 ] );
}
printf( "%lld\n", Ans );
return;
}
int main() {
Init();
int T; scanf( "%d", &T );
for( ; T; --T ) Work();
return 0;
}