Numpy矩阵拼接
一、矩阵拼接一、矩阵拼接
numpy矩阵拼接常用方法:
np.append(arr,values,axis) np.concatenate(arrays,axis,out=None) np.stack(arrays,axis,out=None) np.hstack(tup) np.vstack(tup)
① np.append(arr,values,axis)
支持数组和数组或数组和数的拼接,不支持三个及以上数组的拼接
参数:
arr:需要被添加values的数组
values:添加到数组arr中的值
axis:可选参数,默认值为None。
注:
1、如果axis没有给出,则默认axis=None,arr,values都将先展平成一维数组。
2、如果axis被指定了,那么arr和values需要同为一维数组或者有相同的shape,否则报错:ValueError: arrays must have same number of dimensions
3、axis的最大值为数组arr的维数-1,如arr维数等于1,axis最大值为0;arr维数等于2,axis最大值为1,以此类推。
4、当arr的维数为2(理解为单通道图),axis=0表示沿着行增长方向添加 values;axis=1表示沿着列增长方向添加values
5、当arr的维数为3(理解为多通道图),axis=0,axis=1时同上;axis=2表示沿着图像深度增长方向添加values
import numpy as np a = [[1,2,3,4]] b = 5 c = [[5,6,7,8]] d = np.append(a,b) # 数组和数拼接,默认axis=None e = np.append(a,c) # 数组和数组拼接,默认axis=None f = np.append(a,c,axis=0) # 按行增长方向拼接(垂直拼接) g = np.append(a,c,axis=1) # 按列增长方向拼接(水平拼接) print(d) print(e) print(f) print(g)
输出:
② np.concatenate(arrays,axis,out=None)
功能与np.append()类似,但是支持多个数组的拼接。
参数:
arrays:一个包含需要组合的数组的元组,这些数组需要满足的要求是:(1)维数相同(2)除axis指定维度外其余维度元素个数对应相等
aixs:维度,指定数组组合的方向,默认为0,即垂直拼接
out:可选参数,是一个多维数组,如果提供该参数,函数返回结果将会保存在out中,当然,out的shape需要与结果相等
import numpy as np a = [[1,2,3,4]] b = 5 c = [[5,6,7,8]] d = np.concatenate((a,b),axis=None) # 数组和数展平成一维数组拼接 e = np.concatenate((a,c)) # 数组和数组拼接,默认axis=0,按行增长方向拼接(垂直拼接) f = np.concatenate((a,c),axis=1) # 数组和数组拼接,按列增长方向拼接(水平拼接) print(d) print(e) print(f)
输出:
③ np.stack(arrays,axis,out=None)
同样支持多矩阵拼接,不同的是,stack会在指定轴方向上添加一个新的维度,axis默认值为0
参数:
arrays:一个包含需要组合的数组的元组,这些数组需要满足的要求是:(1)维数相同(2)各维度元素个数对应相等(即形状相等)
aixs:维度,指定数组增加哪个维度,以及组合的方向。axis默认值为0,默认增加零轴,并按照零轴方向组合。
out:可选参数,是一个多维数组,如果提供该参数,函数返回结果将会保存在out中,当然,out的shape需要与结果相等
import numpy as np a = np.array([[1,2,3,4],[5,6,7,8],[9,10,11,12]]) b = np.array([[13,14,15,16],[17,18,19,20],[21,22,23,24]]) print(a.shape) print(b.shape) c = np.stack((a,b)) # 默认axis=0,数组和数组在0轴拼接,并在该纬度增加一维 d = np.stack((a,b),axis=1) # axis=1,数组和数组在1轴拼接,并在该纬度增加一维 e = np.stack((a,b),axis=2) # axis=2,数组和数组在2轴拼接,并在该纬度增加一维 print(c, c.shape) print(d, d.shape) print(e, e.shape)
输出:
④ np.hstack(tup)
水平堆叠,对多维数组来说,水平堆叠相当于在第二个维度做concatenation
import numpy as np a = np.array([[1,2,3,4],[5,6,7,8],[9,10,11,12]]) b = np.array([[13,14,15,16],[17,18,19,20],[21,22,23,24]]) c = np.hstack((a,b)) print(a, a.shape) print(b, b.shape) print(c, c.shape)
输出:
⑤ np.vstack(tup)
垂直堆叠,对多维数组来说,垂直堆叠相当于在第一个维度做concatenation
import numpy as np a = np.array([[1,2,3,4],[5,6,7,8],[9,10,11,12]]) b = np.array([[13,14,15,16],[17,18,19,20],[21,22,23,24]]) c = np.vstack((a,b)) print(a, a.shape) print(b, b.shape) print(c, c.shape)
输出:
转自:原文链接:https://blog.csdn.net/weixin_44842318/article/details/129783803
作者:楚千羽
出处:https://www.cnblogs.com/chuqianyu/
本文来自博客园,本文作者:楚千羽,转载请注明原文链接:https://www.cnblogs.com/chuqianyu/p/17613021.html
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须在文章页面给出原文连接,否则保留追究法律责任的权利!
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 【自荐】一款简洁、开源的在线白板工具 Drawnix
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· Docker 太简单,K8s 太复杂?w7panel 让容器管理更轻松!
2022-08-07 使用MindSpore训练手写数字识别模型
2020-08-07 matlab画3维meshgrid/plot3/mesh/surf的用法