吴恩达Coursera, 机器学习专项课程, Machine Learning:Unsupervised Learning, Recommenders, Reinforcement Learning第二周编程作业1
吴恩达Coursera, 机器学习专项课程, Machine Learning:Unsupervised Learning, Recommenders, Reinforcement Learning第二周所有jupyter notebook文件1:
吴恩达Coursera, 机器学习专项课程, Machine Learning:Unsupervised Learning, Recommenders, Reinforcement Learning第二周所有jupyter notebook文件(包括实验室练习文件)1
本次作业
Exercise 1
# GRADED FUNCTION: cofi_cost_func # UNQ_C1 def cofi_cost_func(X, W, b, Y, R, lambda_): """ Returns the cost for the content-based filtering Args: X (ndarray (num_movies,num_features)): matrix of item features W (ndarray (num_users,num_features)) : matrix of user parameters b (ndarray (1, num_users) : vector of user parameters Y (ndarray (num_movies,num_users) : matrix of user ratings of movies R (ndarray (num_movies,num_users) : matrix, where R(i, j) = 1 if the i-th movies was rated by the j-th user lambda_ (float): regularization parameter Returns: J (float) : Cost """ nm, nu = Y.shape J = 0 ### START CODE HERE ### error = 0.5 * (np.square(X @ W.T+b - Y) * R).sum() reg1 = 0.5 * lambda_ * np.square(X).sum() reg2 = 0.5 * lambda_ * np.square(W).sum() J = error + reg1 + reg2 ### END CODE HERE ### return J
作者:楚千羽
出处:https://www.cnblogs.com/chuqianyu/
本文来自博客园,本文作者:楚千羽,转载请注明原文链接:https://www.cnblogs.com/chuqianyu/p/16947363.html
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须在文章页面给出原文连接,否则保留追究法律责任的权利!
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· Manus的开源复刻OpenManus初探
· AI 智能体引爆开源社区「GitHub 热点速览」
· 从HTTP原因短语缺失研究HTTP/2和HTTP/3的设计差异
· 三行代码完成国际化适配,妙~啊~