吴恩达Coursera, 机器学习专项课程, Machine Learning:Unsupervised Learning, Recommenders, Reinforcement Learning第一周编程作业2
吴恩达Coursera, 机器学习专项课程, Machine Learning:Unsupervised Learning, Recommenders, Reinforcement Learning第一周所有jupyter notebook文件2:
吴恩达Coursera, 机器学习专项课程, Machine Learning:Unsupervised Learning, Recommenders, Reinforcement Learning第一周所有jupyter notebook文件(包括实验室练习文件)1
本次作业
Exercise 1
# UNQ_C1 # GRADED FUNCTION: estimate_gaussian def estimate_gaussian(X): """ Calculates mean and variance of all features in the dataset Args: X (ndarray): (m, n) Data matrix Returns: mu (ndarray): (n,) Mean of all features var (ndarray): (n,) Variance of all features """ m, n = X.shape ### START CODE HERE ### mu = np.zeros((n,1)) var = np.zeros((n,1)) mu = np.mean(X, axis=0) # axis=0表示列,每列的均值 var = np.var(X,axis=0) # 求每列的方差 ### END CODE HERE ### return mu, var
Exercise 2
# UNQ_C2 # GRADED FUNCTION: select_threshold def select_threshold(y_val, p_val): """ Finds the best threshold to use for selecting outliers based on the results from a validation set (p_val) and the ground truth (y_val) Args: y_val (ndarray): Ground truth on validation set p_val (ndarray): Results on validation set Returns: epsilon (float): Threshold chosen F1 (float): F1 score by choosing epsilon as threshold """ best_epsilon = 0 best_F1 = 0 F1 = 0 step_size = (max(p_val) - min(p_val)) / 1000 for epsilon in np.arange(min(p_val), max(p_val), step_size): ### START CODE HERE ### cvPrecision = p_val < epsilon tp = np.sum((cvPrecision == 1) & (y_val == 1)).astype(float) # sum求和是int型的,需要转为float fp = np.sum((cvPrecision == 1) & (y_val == 0)).astype(float) fn = np.sum((cvPrecision == 0) & (y_val == 1)).astype(float) precision = tp/(tp+fp) # 精准度 recision = tp/(tp+fn) # 召回率 F1 = (2*precision*recision)/(precision+recision) # F1Score计算公式 ### END CODE HERE ### if F1 > best_F1: best_F1 = F1 best_epsilon = epsilon return best_epsilon, best_F1
作者:楚千羽
出处:https://www.cnblogs.com/chuqianyu/
本文来自博客园,本文作者:楚千羽,转载请注明原文链接:https://www.cnblogs.com/chuqianyu/p/16947306.html
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须在文章页面给出原文连接,否则保留追究法律责任的权利!
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· Manus的开源复刻OpenManus初探
· AI 智能体引爆开源社区「GitHub 热点速览」
· 从HTTP原因短语缺失研究HTTP/2和HTTP/3的设计差异
· 三行代码完成国际化适配,妙~啊~