吴恩达Coursera, 机器学习专项课程, Machine Learning:Advanced Learning Algorithms第三周所有jupyter notebook文件:
本次作业
Exercise 1
| |
| |
| def eval_mse(y, yhat): |
| """ |
| Calculate the mean squared error on a data set. |
| Args: |
| y : (ndarray Shape (m,) or (m,1)) target value of each example |
| yhat : (ndarray Shape (m,) or (m,1)) predicted value of each example |
| Returns: |
| err: (scalar) |
| """ |
| m = len(y) |
| err = 0.0 |
| for i in range(m): |
| |
| err += (y[i]-yhat[i])**2 |
| err = err /2/ m |
| |
| |
| return(err) |
Exercise 2
| |
| |
| def eval_cat_err(y, yhat): |
| """ |
| Calculate the categorization error |
| Args: |
| y : (ndarray Shape (m,) or (m,1)) target value of each example |
| yhat : (ndarray Shape (m,) or (m,1)) predicted value of each example |
| Returns:| |
| cerr: (scalar) |
| """ |
| m = len(y) |
| incorrect = 0 |
| for i in range(m): |
| |
| if y[i] != yhat[i]: |
| incorrect += 1 |
| cerr = incorrect / m |
| |
| |
| |
| return(cerr) |
Exercise 3
| |
| |
| import logging |
| logging.getLogger("tensorflow").setLevel(logging.ERROR) |
| |
| tf.random.set_seed(1234) |
| model = Sequential( |
| [ |
| |
| |
| Dense(120,activation='relu',name='layer1'), |
| Dense(40,activation='relu',name='layer2'), |
| Dense(6,activation='linear',name='layer3') |
| |
| |
| |
| ], name="Complex" |
| ) |
| model.compile( |
| |
| loss= tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), |
| optimizer=tf.keras.optimizers.Adam(0.01), |
| |
| ) |
Exercise 4
| |
| |
| |
| tf.random.set_seed(1234) |
| model_s = Sequential( |
| [ |
| |
| Dense(6,activation='relu',name='layer1'), |
| Dense(6,activation='linear',name='layer2') |
| |
| ], name = "Simple" |
| ) |
| model_s.compile( |
| |
| loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), |
| optimizer = tf.keras.optimizers.Adam(0.01), |
| |
| ) |
Exercise 5
| |
| |
| |
| tf.random.set_seed(1234) |
| model_r = Sequential( |
| [ |
| |
| Dense(120,activation='relu',kernel_regularizer=tf.keras.regularizers.l2(0.1),name='layer1'), |
| Dense(40,activation='relu',kernel_regularizer=tf.keras.regularizers.l2(0.1),name='layer2'), |
| Dense(6,activation='linear',name='layer3') |
| |
| ], name= 'aaa' |
| ) |
| model_r.compile( |
| |
| loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), |
| optimizer = tf.keras.optimizers.Adam(0.01), |
| |
| ) |
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· Manus的开源复刻OpenManus初探
· AI 智能体引爆开源社区「GitHub 热点速览」
· 从HTTP原因短语缺失研究HTTP/2和HTTP/3的设计差异
· 三行代码完成国际化适配,妙~啊~