机器视觉实验二

一、作业信息
| 博客班级 | https://edu.cnblogs.com/campus/ahgc/machinelearning/ |
|作业要求 | https://edu.cnblogs.com/campus/ahgc/machinelearning/homework/12004|
| 学号 | 3180701239 |
二、实验目的
1.理解K-近邻算法原理,能实现算法K近邻算法;
2.掌握常见的距离度量方法;
3.掌握K近邻树实现算法;
4.针对特定应用场景及数据,能应用K近邻解决实际问题。
三、实验内容
1.实现曼哈顿距离、欧氏距离、闵式距离算法,并测试算法正确性。
2.实现K近邻树算法;
3.针对iris数据集,应用sklearn的K近邻算法进行类别预测。
4.针对iris数据集,编制程序使用K近邻树进行类别预测。
四、实验报告要求
1.对照实验内容,撰写实验过程、算法及测试结果;
2.代码规范化:命名规则、注释;
3.分析核心算法的复杂度;
4.查阅文献,讨论K近邻的优缺点;
5.举例说明K近邻的应用场景。
五、实验过程
K近邻法是基本且简单的分类与回归方法。K近邻法的基本做法是:对给定的训练实例点和输入实例点,首先确定输入实例点的K个最近邻训练实例点,然后利用这K个训练实例点的类的多数来预测输入实例点的类。

·p1= 1 曼哈顿距离
·p2= 2 欧氏距离
·p3= inf 闵式距离minkowski_distance
import math
from itertools import combinations
def L(x, y, p=2):
# x1 = [1, 1], x2 = [5,1]
if len(x) == len(y) and len(x) > 1:
sum = 0
for i in range(len(x)):
sum += math.pow(abs(x[i] - y[i]), p)
return math.pow(s#2. 数据准备
x1 = [1, 1]
x2 = [5, 1]
x3 = [4, 4]

%#3.输入数据
for i in range(1, 5):
r = {'1-{}'.format(c):L(x1, c, p = i) for c in [x2, x3]}#字典

print(min(zip(r.values(), r.keys())))um, 1 / p)
else:
    return 0

结果:

%#2、实现K近邻树算法
%#k阶近邻算法(少数服从多数)
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

%matplotlib inline

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from collections import Counter

  1. 载入数据
    iris = load_iris()
    df = pd.DataFrame(iris.data, columns=iris.feature_names)
    df['label'] = iris.target
    df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
    data = np.array(df.iloc[:100, [0, 1, -1]])
    plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0')
    plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1')
    plt.xlabel('sepal length')
    plt.ylabel('sepal width')
    plt.legend()
    结果:

  2. 构造模型
    class KNN:
    def init(self, X_train, y_train, n_neighbors = 3, p = 2):
    self.n = n_neighbors
    self.p = p
    self.X_train = X_train
    self.y_train = y_train

    def predict(self,X):
    knn_list = []
    for i in range(self.n):
    dist = np.linalg.norm(X-self.X_train[i],ord=self.p)
    knn_list.append((dist,self.y_train[i]))
    for i in range(self.n,len(self.X_train)):
    max_index = knn_list.index(max(knn_list,key=lambda x : x[0]))
    dist = np.linalg.norm(X-self.X_train[i],ord=self.p)
    if knn_list[max_index][0] > dist:
    knn_list[max_index] = (dist,self.y_train[i])
    knn = [k[-1] for k in knn_list]
    count_pairs = Counter(knn)
    return count_pairs.most_common(1)[0][0]

    def score(self, X_test, y_test):
    right_count = 0
    n = 10
    for X, y in zip(X_test, y_test):
    label = self.predict(X)
    if label == y:
    right_count += 1
    return right_count / len(X_test)
    clf = KNN(X_train, y_train)
    clf.score(X_test, y_test)
    结果:

    test_point = [6.0, 3.0]
    print('Test Point: {}'.format(clf.predict(test_point)))
    结果:

plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0')
plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1')
plt.plot(test_point[0], test_point[1], 'bo', label='test_point')
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend()
结果:

3、针对iris数据集,应用sklearn的K近邻算法进行类别预测
scikit - learn
sklearn.neighbors.KNeighborsClassifier
n_neighbors: 临近点个数
p: 距离度量
algorithm: 近邻算法,可选{‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’}
weights: 确定近邻的权重
from sklearn.neighbors import KNeighborsClassifier
clf_sk = KNeighborsClassifier()
clf_sk.fit(X_train, y_train)
结果:

clf_sk.score(X_test, y_test)
结果:

4、针对iris数据集,编制程序使用K近邻树进行类别预测
(1)构造kd树
kd-tree 每个结点中主要包含的数据如下:
class KdNode(object):
def init(self, dom_elt, split, left, right):
self.dom_elt = dom_elt#结点的父结点
self.split = split#划分结点
self.left = left#做结点
self.right = right#右结点

class KdTree(object):
def init(self, data):
k = len(data[0])#数据维度
print("创建结点")
print("开始执行创建结点函数!!!")
def CreateNode(split, data_set):
#print(split,data_set)
if not data_set:#数据集为空
return None
#print("进入函数!!!")
data_set.sort(key=lambda x:x[split])#开始找切分平面的维度
#print("data_set:",data_set)
split_pos = len(data_set)//2 #取得中位数点的坐标位置(求整)
median = data_set[split_pos]
split_next = (split+1) % k #(取余数)取得下一个节点的分离维数
return KdNode(
median,
split,
CreateNode(split_next, data_set[:split_pos]),#创建左结点
CreateNode(split_next, data_set[split_pos+1:]))#创建右结点
#print("结束创建结点函数!!!")
self.root = CreateNode(0, data)#创建根结点

KDTree的前序遍历
def preorder(root):
print(root.dom_elt)
if root.left:
preorder(root.left)
if root.right:
preorder(root.right)
(2)搜索kd树

KDTree的前序遍历
def preorder(root):
print(root.dom_elt)
if root.left:
preorder(root.left)
if root.right:
preorder(root.right)

from math import sqrt
from collections import namedtuple
定义一个namedtuple,分别存放最近坐标点、最近距离和访问过的节点数
result = namedtuple("Result_tuple",
"nearest_point nearest_dist nodes_visited")

搜索开始
def find_nearest(tree, point):
k = len(point)#数据维度

def travel(kd_node, target, max_dist):
    if kd_node is None:
        return result([0]*k, float("inf"), 0)#表示数据的无
    
    nodes_visited = 1
    s = kd_node.split #数据维度分隔
    pivot = kd_node.dom_elt #切分根节点
    
    if target[s] <= pivot[s]:
        nearer_node = kd_node.left #下一个左结点为树根结点
        further_node = kd_node.right #记录右节点
    else: #右面更近
        nearer_node = kd_node.right
        further_node = kd_node.left
    temp1 = travel(nearer_node, target, max_dist)
    
    nearest = temp1.nearest_point# 得到叶子结点,此时为nearest
    dist = temp1.nearest_dist #update distance
    
    nodes_visited += temp1.nodes_visited
    print("nodes_visited:", nodes_visited)
    if dist < max_dist:
        max_dist = dist
    
    temp_dist = abs(pivot[s]-target[s])#计算球体与分隔超平面的距离
    if max_dist < temp_dist:
        return result(nearest, dist, nodes_visited)
    # -------
    #计算分隔点的欧式距离
    
    temp_dist = sqrt(sum((p1-p2)**2 for p1, p2 in zip(pivot, target)))#计算目标点到邻近节点的Distance
    
    if temp_dist < dist:
        
        nearest = pivot #更新最近点
        dist = temp_dist #更新最近距离
        max_dist = dist #更新超球体的半径
        print("输出数据:" , nearest, dist, max_dist)
        
    # 检查另一个子结点对应的区域是否有更近的点
    temp2 = travel(further_node, target, max_dist)

    nodes_visited += temp2.nodes_visited
    if temp2.nearest_dist < dist:  # 如果另一个子结点内存在更近距离
        nearest = temp2.nearest_point  # 更新最近点
        dist = temp2.nearest_dist  # 更新最近距离

    return result(nearest, dist, nodes_visited)

return travel(tree.root, point, float("inf"))  # 从根节点开始递归

(3)例3.2

data= [[2,3],[5,4],[9,6],[4,7],[8,1],[7,2]]
kd=KdTree(data)
preorder(kd.root)
结果:

from time import clock
from random import random

产生一个k维随机向量,每维分量值在0~1之间
def random_point(k):
return [random()for_inrange(k)]

产生n个k维随机向量
def random_points(k, n):
return [random_point(k) for_inrange(n)]
ret=find_nearest(kd, [3,4.5])
print (ret)
结果:

N=400000
t0=clock()
kd2=KdTree(random_points(3, N)) # 构建包含四十万个3维空间样本点的kd树
ret2=find_nearest(kd2, [0.1,0.5,0.8]) # 四十万个样本点中寻找离目标最近的点
t1=clock()print ("time: ",t1-t0, "s")
print (ret2)
结果:

五、实验小结
了解了曼哈顿距离、欧氏距离、闵式距离算法

posted @ 2021-05-22 00:01  初年&已逝  阅读(129)  评论(0编辑  收藏  举报