小白闯

导航

机器学习之聚类

公式实在不好敲呀,我拍了我笔记上的公式部分。原谅自己小学生的字体(太丑了)。

 

聚类属于无监督学习方法,典型的无监督学习方法还有密度估计和异常检测。

聚类任务:将数据集中的样本划分为若干个不相交的子集,每个子集为一个类。

性能指标(有效性指标):类内相似度高,类间相似度低。

性能度量:

(1)外部指标:

 将性能结果C={Ci, i=1...k},与参考模型结果C*{C*i, i=1..s}进行对比(其中参考模型一般为专家根据经验划分的类),得出一些参数:

根据这些参数算出不同的外部指标,这些指标都在0-1之间,且值越大越好

(2)内部指标:(只考虑聚类结果,有距离来定义各个参数)

  • 距离计算

距离性质:

常用距离(范数):

1、闵可夫斯基距离:

2、曼哈顿距离:

3、欧氏距离(最常用):

3、VDM距离

4、闵可夫与VDM结合(混合属性)

 

  • 原型聚类

1、K-means(简单又经典的聚类方法):

input:样本集 D={xi, i=1...m},

           k(欲分类类别个数)

output:划分为K类:C={Ci, i=1...k}

步骤:

(1)随机选取K个样本作为均值向量

(2)计算每个样本与各均值向量的距离

(3)由刚刚划分出的类别求出新的均值向量,再重复步骤(2)

(4)直到n+1轮迭代与第n轮相同(相似),算法停止迭代

2、学习向量量化(Learning Vector Quantization, LVQ)

思路:找一组原型你向量刻画聚类结构,但此算法假设数据样本都是带有类标记的。用样本本身的类标记进行辅助聚类。

input:样本集D={(xi,yi),i=1...m}

           原型向量个数q,各原型向量预设类别标记{ti, i=1...q}

          学习率:η

output:原型向量

步骤:

(1)初始化一组原型向量

(2)选取样本,找到与其最近的原型向量(以距离刻画)

(3)根据样本本身类标记与原型类标记是否一致决定如何更新原型向量。

(4)更新公式:

(5)满足条件(迭代次数或其他)后迭代停止。

3、高斯混合聚类

高斯分布(正态分布):

混合分布:

 

posted on 2018-05-06 12:16  李小白cc  阅读(1433)  评论(0编辑  收藏  举报