【bzoj2818】Gcd
2818: Gcd
Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 4344 Solved: 1912
[Submit][Status][Discuss]
Description
给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的
数对(x,y)有多少对.
Input
一个整数N
Output
如题
Sample Input
4
Sample Output
4
【题解】
用f[i]表示1~i中gcd(a,b)=1的数对(a,b)的对数,那么显然 f[i] = 1+2* sigma(phi[j]) 1<j<=i
那么ans = sigma(f[N/p]) p为小于N的素数
原理很简单,即如果gcd(a,b)=1,那么gcd(a*p,b*p)=p
1 /************* 2 bzoj 2818 3 by chty 4 2016.11.3 5 *************/ 6 #include<iostream> 7 #include<cstdio> 8 #include<cstdlib> 9 #include<cstring> 10 #include<ctime> 11 #include<cmath> 12 #include<algorithm> 13 using namespace std; 14 #define MAXN 10000010 15 int n,cnt,prime[MAXN],check[MAXN],phi[MAXN]; 16 long long f[MAXN],ans; 17 inline int read() 18 { 19 int x=0,f=1; char ch=getchar(); 20 while(!isdigit(ch)) {if(ch=='-') f=-1; ch=getchar();} 21 while(isdigit(ch)) {x=x*10+ch-'0'; ch=getchar();} 22 return x*f; 23 } 24 void get() 25 { 26 phi[1]=1; 27 for(int i=2;i<=n;i++) 28 { 29 if(!check[i]) {prime[++cnt]=i; phi[i]=i-1;} 30 for(int j=1;j<=cnt&&prime[j]*i<=n;j++) 31 { 32 check[i*prime[j]]=1; 33 if(i%prime[j]) phi[i*prime[j]]=phi[i]*(prime[j]-1); 34 else {phi[i*prime[j]]=phi[i]*prime[j]; break;} 35 } 36 } 37 } 38 int main() 39 { 40 freopen("cin.in","r",stdin); 41 freopen("cout.out","w",stdout); 42 n=read(); 43 get(); 44 f[1]=1; 45 for(int i=2;i<=n;i++) f[i]=f[i-1]+2*phi[i]; 46 for(int i=1;i<=cnt;i++) 47 if(prime[i]<n) ans+=f[n/prime[i]]; 48 printf("%lld\n",ans); 49 return 0; 50 }