Loading

线程

第三章

线程

image

线程是轻量级的进程,线程的本质仍是进程

ps -Lf pid // 查看线程

image

线程划分了.text和栈,其他都是共享的

image

image

image

创建一个线程

/*
    一般情况下,main函数所在的线程我们称之为主线程(main线程),其余创建的线程
    称之为子线程。
    程序中默认只有一个进程,fork()函数调用,会变成两个进程
    程序中默认只有一个线程,pthread_create()函数调用,会变成2个线程。

    #include <pthread.h>
    int pthread_create(pthread_t *thread, const pthread_attr_t *attr, 
    void *(*start_routine) (void *), void *arg);

        - 功能:创建一个子线程
        - 参数:
            - thread:传出参数,线程创建成功后,子线程的线程ID被写到该变量中。
            - attr : 设置线程的属性,一般使用默认值,NULL
            - start_routine : 函数指针,这个函数是子线程需要处理的逻辑代码
            - arg : 给第三个参数使用,传参
        - 返回值:
            成功:0
            失败:返回错误号。这个错误号和之前errno不太一样。
            获取错误号的信息:  char * strerror(int errnum);
*/
#include <stdio.h>
#include <pthread.h>
#include <string.h>
#include <unistd.h>

void * callback(void * arg) {
    printf("child thread...\n");
    printf("arg value: %d\n", *(int *)arg);
    return NULL;
}

int main() {

    pthread_t tid;

    int num = 10;

    // 创建一个子线程
    int ret = pthread_create(&tid, NULL, callback, (void *)&num);

    if(ret != 0) {
        char * errstr = strerror(ret);
        printf("error : %s\n", errstr);
    } 

    for(int i = 0; i < 5; i++) {
        printf("%d\n", i);
    }

    sleep(1);

    return 0;   // exit(0);
}

终止一个线程

/*

    #include <pthread.h>
    void pthread_exit(void *retval);
        功能:终止一个线程,在哪个线程中调用,就表示终止哪个线程
        参数:
            retval:需要传递一个指针,作为一个返回值,可以在pthread_join()中获取到。

    pthread_t pthread_self(void);
        功能:获取当前的线程的线程ID

    int pthread_equal(pthread_t t1, pthread_t t2);
        功能:比较两个线程ID是否相等
        不同的操作系统,pthread_t类型的实现不一样,有的是无符号的长整型,有的
        是使用结构体去实现的。
*/
#include <stdio.h>
#include <pthread.h>
#include <string.h>

void * callback(void * arg) {
    printf("child thread id : %ld\n", pthread_self());
    return NULL;    // pthread_exit(NULL);
} 

int main() {

    // 创建一个子线程
    pthread_t tid;
    int ret = pthread_create(&tid, NULL, callback, NULL);

    if(ret != 0) {
        char * errstr = strerror(ret);
        printf("error : %s\n", errstr);
    }

    // 主线程
    for(int i = 0; i < 5; i++) {
        printf("%d\n", i);
    }

    printf("tid : %ld, main thread id : %ld\n", tid ,pthread_self());

    // 让主线程退出,当主线程退出时,不会影响其他正常运行的线程。
    pthread_exit(NULL);

    printf("main thread exit\n");

    return 0;   // exit(0);
}

连接一个已经终止的线程

/*
    #include <pthread.h>
    int pthread_join(pthread_t thread, void **retval);
        - 功能:和一个已经终止的线程进行连接
                简单来说功能就是:回收子线程的资源
                这个函数是阻塞函数,调用一次只能回收一个子线程, 类似于wait
                一般在主线程中使用
        - 参数:
            - thread:需要回收的子线程的ID
            - retval: 接收子线程退出时的返回值
                      需要二级指针的原因:传值和传址的关系, 一级指针相当于传值,二级指针就是传址
        - 返回值:
            0 : 成功
            非0 : 失败,返回的错误号
*/

#include <stdio.h>
#include <pthread.h>
#include <string.h>
#include <unistd.h>

int value = 10;

void * callback(void * arg) {
    printf("child thread id : %ld\n", pthread_self());
    // sleep(3); // 测试阻塞行为
    // return NULL; 
    // int value = 10; // 局部变量
    pthread_exit((void *)&value);   // return (void *)&value;
} 

int main() {

    // 创建一个子线程
    pthread_t tid;
    int ret = pthread_create(&tid, NULL, callback, NULL);

    if(ret != 0) {
        char * errstr = strerror(ret);
        printf("error : %s\n", errstr);
    }

    // 主线程
    for(int i = 0; i < 5; i++) {
        printf("%d\n", i);
    }

    printf("tid : %ld, main thread id : %ld\n", tid ,pthread_self());

    // 主线程调用pthread_join()回收子线程的资源
    int * thread_retval; // 传递thread_retval的地址才能改变这个变量
    // 将指针变量的地址传入, 这样返回的值会赋给指针的地址, 等价于地址传递
    ret = pthread_join(tid, (void **)&thread_retval); // 阻塞行为

    if(ret != 0) {
        char * errstr = strerror(ret);
        printf("error : %s\n", errstr);
    }

    printf("exit data : %d\n", *thread_retval); // 打印这个变量指向的地址空间的值

    printf("回收子线程资源成功!\n");

    // 让主线程退出,当主线程退出时,不会影响其他正常运行的线程。
    pthread_exit(NULL);

    return 0; 
}

分离线程

/*
    #include <pthread.h>
    int pthread_detach(pthread_t thread);
        - 功能:分离一个线程。被分离的线程在终止的时候,会自动释放资源返回给系统。
          1.不能多次分离,会产生不可预料的行为。
          2.不能去连接一个已经分离的线程,会报错。
        - 参数:需要分离的线程的ID
        - 返回值:
            成功:0
            失败:返回错误号
*/
#include <stdio.h>
#include <pthread.h>
#include <string.h>
#include <unistd.h>

void * callback(void * arg) {
    // 子线程号是一个长整型
    printf("chid thread id : %ld\n", pthread_self());
    return NULL;
}

int main() {

    // 创建一个子线程
    pthread_t tid;

    int ret = pthread_create(&tid, NULL, callback, NULL);
    if(ret != 0) {
        char * errstr = strerror(ret);
        printf("error1 : %s\n", errstr);
    }

    // 输出主线程和子线程的id
    printf("tid : %ld, main thread id : %ld\n", tid, pthread_self());

    // 设置子线程分离,子线程分离后,子线程结束时对应的资源就不需要主线程释放
    ret = pthread_detach(tid);
    if(ret != 0) {
        char * errstr = strerror(ret);
        printf("error2 : %s\n", errstr);
    }

    // 设置分离后,对分离的子线程进行连接 pthread_join()
    // ret = pthread_join(tid, NULL);
    // if(ret != 0) {
    //     char * errstr = strerror(ret);
    //     printf("error3 : %s\n", errstr);
    // }

    pthread_exit(NULL);

    return 0;
}

线程取消:

man pthreads : 查看取消点

让线程中途停止

/*
    #include <pthread.h>
    int pthread_cancel(pthread_t thread);
        - 功能:取消线程(让线程终止)
            取消某个线程,可以终止某个线程的运行,
            但是并不是立马终止,而是当子线程执行到一个取消点,线程才会终止。
            取消点:系统规定好的一些系统调用,我们可以粗略的理解为从用户区到内核区的切换,这个位置称之为取消点。
*/

#include <stdio.h>
#include <pthread.h>
#include <string.h>
#include <unistd.h>

void * callback(void * arg) {
    printf("chid thread id : %ld\n", pthread_self());
    for(int i = 0; i < 5; i++) {
        printf("child : %d\n", i);
    }
    return NULL;
}

int main() {
    
    // 创建一个子线程
    pthread_t tid;

    int ret = pthread_create(&tid, NULL, callback, NULL);
    if(ret != 0) {
        char * errstr = strerror(ret);
        printf("error1 : %s\n", errstr);
    }

    // 取消线程
    pthread_cancel(tid);

    for(int i = 0; i < 5; i++) {
        printf("%d\n", i);
    }

    // 输出主线程和子线程的id
    printf("tid : %ld, main thread id : %ld\n", tid, pthread_self());

    
    pthread_exit(NULL);

    return 0;
}

线程属性

image-20220311222304563

pthread_attr_destroy          pthread_attr_getstack         pthread_attr_setschedparam
pthread_attr_getaffinity_np   pthread_attr_getstackaddr     pthread_attr_setschedpolicy
pthread_attr_getdetachstate   pthread_attr_getstacksize     pthread_attr_setscope
pthread_attr_getguardsize     pthread_attr_init             pthread_attr_setstack
pthread_attr_getinheritsched  pthread_attr_setaffinity_np   pthread_attr_setstackaddr
pthread_attr_getschedparam    pthread_attr_setdetachstate   pthread_attr_setstacksize
pthread_attr_getschedpolicy   pthread_attr_setguardsize
pthread_attr_getscope         pthread_attr_setinheritsched

通过线程属性设置线程分离

/*
    int pthread_attr_init(pthread_attr_t *attr);
        - 初始化线程属性变量

    int pthread_attr_destroy(pthread_attr_t *attr);
        - 释放线程属性的资源

    int pthread_attr_getdetachstate(const pthread_attr_t *attr, int *detachstate);
        - 获取线程分离的状态属性

    int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate);
        - 设置线程分离的状态属性
        - pthread_attr_setdetachstate()函数将attr绑定的线程的分离状态属性设置为detachstate
        中指定的值。分离状态属性决定了使用attr属性创建的线程是在 joinable 还是 detached 状态下创建。
        
    更多信息需要查看man文档,man pthread_attr_setdetachstate
*/     

#include <stdio.h>
#include <pthread.h>
#include <string.h>
#include <unistd.h>

void * callback(void * arg) {
    printf("chid thread id : %ld\n", pthread_self());
    return NULL;
}

int main() {

    // 1. 创建一个线程属性变量
    pthread_attr_t attr;
    // 2. 初始化属性变量
    pthread_attr_init(&attr);

    // 3. 设置属性
    pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);

    // 4. 创建一个子线程
    pthread_t tid;

    int ret = pthread_create(&tid, &attr, callback, NULL); // 使用attr属性创建的线程
    if(ret != 0) {
        char * errstr = strerror(ret);
        printf("error1 : %s\n", errstr);
    }

    // 获取线程的栈的大小
    size_t size;
    pthread_attr_getstacksize(&attr, &size);
    printf("thread stack size : %ld\n", size);

    // 输出主线程和子线程的id
    printf("tid : %ld, main thread id : %ld\n", tid, pthread_self());

    // 释放线程属性资源
    pthread_attr_destroy(&attr);

    pthread_exit(NULL);

    return 0;
}

线程同步

多线程卖票的案例

/*
    使用多线程实现买票的案例。
    有3个窗口,一共是100张票。
*/

#include <stdio.h>
#include <pthread.h>
#include <unistd.h>

// 全局变量,所有的线程都共享这一份资源。
int tickets = 100;

void * sellticket(void * arg) {
    // 卖票
    while(tickets > 0) {
        usleep(6000);  // 体现多个线程卖同一张票的错误
        printf("%ld 正在卖第 %d 张门票\n", pthread_self(), tickets);
        tickets--;
    }
    return NULL;
}

int main() {

    // 创建3个子线程
    pthread_t tid1, tid2, tid3;
    pthread_create(&tid1, NULL, sellticket, NULL);
    pthread_create(&tid2, NULL, sellticket, NULL);
    pthread_create(&tid3, NULL, sellticket, NULL);

    // 回收子线程的资源,阻塞, 线程没有结束阻塞到这里
    pthread_join(tid1, NULL); // 必须等到上一个线程结束,下一个线程才能开始
    pthread_join(tid2, NULL);
    pthread_join(tid3, NULL);

    // 设置线程分离。自动返回给系统
    // pthread_detach(tid1);
    // pthread_detach(tid2);
    // pthread_detach(tid3);

    pthread_exit(NULL); // 退出主线程

    return 0;
}

image-20220312132728291

临界资源就是共享数据,对临界资源操作的区域就是临界区,tickets就是临界资源,对tickets的操作的区域就是临界区;

线程同步会降低线程的执行效率; 但是是必须的,因为我们要保证数据的安全性

线程同步只是针对临界区,串行执行临界区

互斥量

image-20220312133053891

进去以后锁上,用完再把锁解开,就是互斥锁;任何时候至多只有一个线程可以锁定该互斥量;互斥量在程序中就相当于一个变量,谁拿到这个变量,谁就上锁了;

image-20220312133500988

/*
    互斥量的类型 pthread_mutex_t
    int pthread_mutex_init(pthread_mutex_t *restrict mutex, const pthread_mutexattr_t *restrict attr);
        - 初始化互斥量
        - 参数 :
            - mutex : 需要初始化的互斥量变量
            - attr : 互斥量相关的属性,NULL
        - restrict : C语言的修饰符,被修饰的指针,不能由另外的一个指针进行操作。
            pthread_mutex_t *restrict mutex = xxx;
            pthread_mutex_t * mutex1 = mutex;

    int pthread_mutex_destroy(pthread_mutex_t *mutex);
        - 释放互斥量的资源

    int pthread_mutex_lock(pthread_mutex_t *mutex);
        - 加锁,阻塞的,如果有一个线程加锁了,那么其他的线程只能阻塞等待

    int pthread_mutex_trylock(pthread_mutex_t *mutex);
        - 尝试加锁,如果加锁失败,不会阻塞,会直接返回。

    int pthread_mutex_unlock(pthread_mutex_t *mutex);
        - 解锁
*/
#include <stdio.h>
#include <pthread.h>
#include <unistd.h>

// 全局变量,所有的线程都共享这一份资源。
int tickets = 1000;

// 创建一个互斥量
pthread_mutex_t mutex;

void * sellticket(void * arg) {

    // 卖票
    while(1) {

        // 加锁
        pthread_mutex_lock(&mutex); // 进来之后先加锁

        if(tickets > 0) {
            usleep(6000);
            printf("%ld 正在卖第 %d 张门票\n", pthread_self(), tickets);
            tickets--;
        }else {
            // 解锁
            pthread_mutex_unlock(&mutex); // 卖完票就解锁
            break;
        }

        // 解锁
        pthread_mutex_unlock(&mutex); // 出去的时候解锁
    }

    

    return NULL;
}

int main() {

    // 初始化互斥量
    pthread_mutex_init(&mutex, NULL);

    // 创建3个子线程
    pthread_t tid1, tid2, tid3;
    pthread_create(&tid1, NULL, sellticket, NULL);
    pthread_create(&tid2, NULL, sellticket, NULL);
    pthread_create(&tid3, NULL, sellticket, NULL);

    // 回收子线程的资源,阻塞
    pthread_join(tid1, NULL);
    pthread_join(tid2, NULL);
    pthread_join(tid3, NULL);

    pthread_exit(NULL); // 退出主线程

    // 释放互斥量资源
    pthread_mutex_destroy(&mutex);

    return 0;
}

死锁

image-20220312142853425

第三种情况,中国人的两只筷子被拿了一支,外国人的刀叉被拿走了一个,谁都吃不上饭

读写锁

posted @   Christopher_James  阅读(16)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 25岁的心里话
· 闲置电脑爆改个人服务器(超详细) #公网映射 #Vmware虚拟网络编辑器
· 零经验选手,Compose 一天开发一款小游戏!
· 通过 API 将Deepseek响应流式内容输出到前端
· AI Agent开发,如何调用三方的API Function,是通过提示词来发起调用的吗
点击右上角即可分享
微信分享提示