mysql中group by存在局限性探讨(待续)
现在有一个需求:在2018年游戏充值记录表(字段主要有: user_name , money , game_id , 表有6000w行)查找出哪些人在某段日期内累计充值金额在100~500元范围内的,返回满足以上条件的所有用户名
具体表结构:
CREATE TABLE `pay_list_pay_2018` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`orderid` varchar(50) NOT NULL,
`user_name` varchar(50) NOT NULL,
`pay_way_id` tinyint(4) NOT NULL,
`money` float NOT NULL,
`paid_amount` float unsigned NOT NULL,
`pay_date` date NOT NULL,
`pay_time` int(11) NOT NULL DEFAULT '0',
`agent_id` int(11) NOT NULL DEFAULT '0',
`placeid` int(11) NOT NULL DEFAULT '0',
`cplaceid` varchar(50) DEFAULT NULL,
`adid` varchar(100) DEFAULT NULL,
`game_id` int(11) NOT NULL DEFAULT '0',
`server_id` int(11) NOT NULL DEFAULT '0',
`reg_date` date NOT NULL,
`reg_time` int(11) NOT NULL DEFAULT '0',
`cid` tinyint(1) NOT NULL DEFAULT '0',
`bank_type` int(11) NOT NULL DEFAULT '1',
`plat_id` tinyint(1) NOT NULL DEFAULT '0',
PRIMARY KEY (`id`),
UNIQUE KEY `orderid` (`orderid`),
KEY `agent_id` (`agent_id`),
KEY `pay_date` (`pay_date`),
KEY `game_id` (`game_id`),
KEY `server_id` (`server_id`),
KEY `user_name` (`user_name`),
KEY `reg_date` (`reg_date`),
KEY `placeid` (`placeid`),
KEY `pay_way_id` (`pay_way_id`),
KEY `plat_id` (`plat_id`),
KEY `pay_time` (`pay_time`),
KEY `reg_time` (`reg_time`),
KEY `bank_type` (`bank_type`)
) ENGINE=InnoDB AUTO_INCREMENT=73555898 DEFAULT CHARSET=utf8
那么,由此快速可以用group by和sum函数筛选用户:
SELECT user_name,sum(money) as pay_money FROM db_pay.`pay_list_pay_2018` WHERE ( `game_id` IN ('688','919','228','179') )
AND ( (`pay_time` BETWEEN '1545580800' AND '1545667200' ))
group by user_name having pay_money BETWEEN '100' and '500'
然后,对于以上sql,当pay_time范围较大火灾game_id数量较多的时候,group by需要处理的分组数量也过多(超过1000w),导致sql时间很长:
后面通过PHP脚本处理,每3天统计一次用户累计充值金额,最后再用php数组记录用户名-累计充值金额:
/**
* 对比充值分表与总表的情况
*/
public function comparePay() {
$row_0 = $row_10 = $row_50 = $row_500 = 0;
$user_names = [];
$db = DB::getInstance('pay');
$date1 = strtotime("2018-01-01");
$date2 = strtotime("2018-01-06");
for ($s_date = $date1; $s_date < $date2; $s_date+=3600*24*3 ) {
$e_date = $s_date+3600*24*3;
$sql = "SELECT user_name,sum(money) as total FROM db_pay.pay_list_pay_2018 where game_id in ('373','365','811','366','351','352','853','1260','988','1206','1232','883','871','872','881','963','884','1231','870','873','882','880','962','874','731','711','654','628','350','291','310','314','311')
and pay_time between {$s_date} and {$e_date} group by user_name";
$list = $db->find($sql);
foreach ($list as $item) {
$user_names[$item['user_name']] += $item['total'];
}
}
foreach ($user_names as $total) {
if($total>=0 && $total<10) {
$row_0++;
}else if($total>=10 && $total<50) {
$row_10++;
}else if($total>=50 && $total<500) {
$row_50++;
}else if($total>500) {
$row_500++;
}
}
echo "\n";
echo count($user_names);
echo "\n";
echo json_encode(compact('row_0','row_10','row_50','row_500'));
}
实际上,以上操作耗时也挺久的,只是将group by运算的压力转移到了PHP上,但是虽然统计日期时间段较长时,同样存在优化空间;
之后,可以考虑swoole并发执行sql或者用其他数据方法处理(待续)