机器学习笔记之基本框架:
机器学习学习思路导图
名词的解释:
回归:
线性回归(polinomial regression多项式回归): https://segmentfault.com/a/1190000007639352
机器学习入门:线性回归及梯度下降: http://blog.csdn.net/xiazdong/article/details/7950084
http://www.cnblogs.com/charlotte77/p/5488488.html
逻辑回归,线性回归?
https://morvanzhou.github.io/tutorials/machine-learning/tensorflow/1-1-A-ANN-and-NN/
神经网络
神经元: M-P模型的来源 :http://blog.csdn.net/u013007900/article/details/50066315
激活函数:?
感知器:单层感知器?
神经网络浅讲:从神经元到深度学习:http://www.cnblogs.com/subconscious/p/5058741.html
python--> anaconda3
python-->
https://github.com/nlintz/TensorFlow-Tutorials
梯度消失?
CNN:卷积神经网络
RNN:循环神经网络
DNN:深度神经网络
Keras. Anaconda,ONNX,Jupyter Notebook.
BP反向传播梯度??
Microsoft Azure Notebooks
https://notebooks.azure.com/Microsoft/libraries/samples/html/Azure%20Notebooks%20-%20Welcome.ipynb
Reference Page:
Introduction to Computer Science: http://www.cs.rpi.edu/~sibel/csci1100/fall2014/index.html
jupyter: http://jupyter.org/
TensorFlow-Tutorials: https://github.com/thrillerist/TensorFlow-Tutorials
http://cs231n.stanford.edu/