李宏毅机器学习课程笔记-5.3神经网络中的反向传播算法
链式法则(Chain Rule)
- \(z=h(y),y=g(x)\to\frac{dz}{dx}=\frac{dz}{dy}\frac{dy}{dx}\)
- \(z=k(x,y),x=g(s),y=h(s)\to\frac{dz}{ds}=\frac{dz}{dx}\frac{dx}{ds}+\frac{dz}{dy}\frac{dy}{ds}\)
反向传播算法(Backpropagation)
变量定义
如下图所示,设神经网络的输入为\(x^n\),该输入对应的label是\(\hat y^n\),神经网络的参数是\(\theta\),神经网络的输出是\(y^n\)。
整个神经网络的Loss为\(L(\theta)=\sum_{n=1}^{N}C^n(\theta)\)。假设\(\theta\)中有一个参数\(w\),那\(\frac{\partial L(\theta)}{\partial w}=\sum^N_{n=1}\frac{\partial C^n(\theta)}{\partial w}\)。
![Backpropagation1](https://images.cnblogs.com/cnblogs_com/chouxianyu/1511971/o_201104063357Backpropagation1.png)
一个神经元的情况
如下图所示,\(z=x_1w_1+x_2w_x+b\),根据链式法则可知\(\frac{\partial C}{\partial w}=\frac{\partial z}{\partial w}\frac{\partial C}{\partial z}\),其中为所有参数\(w\)计算\(\frac{\partial z}{\partial w}\)是Forward Pass、为所有激活函数的输入\(z\)计算\(\frac{\partial C}{\partial z}\)是Backward Pass。
![Backpropagation2.png](https://images.cnblogs.com/cnblogs_com/chouxianyu/1511971/o_201104064536Backpropagation2.png)
Forward Pass
Forward Pass是为所有参数\(w\)计算\(\frac{\partial z}{\partial w}\),它的方向是从前往后算的,所以叫Forward Pass。
以一个神经元为例,因为\(z=x_1w_1+x_2w_x+b\),所以\(\frac{\partial z}{\partial w_1}=x_1,\frac{\partial z}{\partial w_2}=x_2\),如下图所示。
![Forward Pass1](https://images.cnblogs.com/cnblogs_com/chouxianyu/1511971/o_201108071142ForwardPass1.jpg)
规律是:该权重乘以的那个输入的值。所以当有多个神经元时,如下图所示。
![Forward Pass2](https://images.cnblogs.com/cnblogs_com/chouxianyu/1511971/o_201108071151ForwardPass2.jpg)
Backward Pass
Backward Pass是为所有激活函数的输入\(z\)计算\(\frac{\partial C}{\partial z}\),它的方向是从后往前算的,要先算出输出层的\(\frac{\partial C}{\partial z}\),再往前计算其它神经元的\(\frac{\partial C}{\partial z}\),所以叫Backward Pass。
![BackwardPass1](https://images.cnblogs.com/cnblogs_com/chouxianyu/1511971/o_201108074342BackwardPass1.jpg)
如上图所示,令\(a=\sigma(z)\),根据链式法则,可知\(\frac{\partial C}{\partial z}=\frac{\partial a}{\partial z}\frac{\partial C}{\partial a}\),其中\(\frac{\partial a}{\partial z}=\sigma'(z)\)是一个常数,因为在Forward Pass时\(z\)的值就已经确定了,而\(\frac{\partial C}{\partial a}=\frac{\partial z'}{\partial a}\frac{\partial C}{\partial z'}+\frac{\partial z''}{\partial a}\frac{\partial C}{\partial z''}=w_3\frac{\partial C}{\partial z'}+w_4\frac{\partial C}{\partial z''}\),所以\(\frac{\partial C}{\partial z}=\sigma'(z)[w_3\frac{\partial C}{\partial z'}+w_4\frac{\partial C}{\partial z''}]\)。
对于式子\(\frac{\partial C}{\partial z}=\sigma'(z)[w_3\frac{\partial C}{\partial z'}+w_4\frac{\partial C}{\partial z''}]\),我们可以发现两点:
-
\(\frac{\partial C}{\partial z}\)的计算式是递归的,因为在计算\(\frac{\partial C}{\partial z}\)的时候需要计算\(\frac{\partial C}{\partial z'}\)和\(\frac{\partial C}{\partial z''}\)。
如下图所示,输出层的\(\frac{\partial C}{\partial z'}\)和\(\frac{\partial C}{\partial z''}\)是容易计算的。
-
\(\frac{\partial C}{\partial z}\)的计算式\(\frac{\partial C}{\partial z}=\sigma'(z)[w_3\frac{\partial C}{\partial z'}+w_4\frac{\partial C}{\partial z''}]\)是一个神经元的形式
如下图所示,只不过没有嵌套sigmoid函数而是乘以一个常数\(\sigma'(z)\),每个\(\frac{\partial C}{\partial z}\)都是一个神经元的形式,所以可以通过神经网络计算\(\frac{\partial C}{\partial z}\)。
总结
- 通过Forward Pass,为所有参数\(w\)计算\(\frac{\partial z}{\partial w}\);
- 通过Backward Pass,为所有激活函数的输入\(z\)计算\(\frac{\partial C}{\partial z}\);
- 最后\(\frac{\partial C}{\partial w}=\frac{\partial C}{\partial z}\frac{\partial z}{\partial w}\),也就求出了梯度。
Github(github.com):@chouxianyu
Github Pages(github.io):@臭咸鱼
知乎(zhihu.com):@臭咸鱼
博客园(cnblogs.com):@臭咸鱼
B站(bilibili.com):@绝版臭咸鱼
微信公众号:@臭咸鱼的快乐生活
转载请注明出处,欢迎讨论和交流!