Spark-源码分析03-SubmitTask
1.Rdd
rdd中 reduce、fold、aggregate、collect、count这些方法 都会调用 sparkContext.runJob ,这些方法称之为Action 触发提交Job
def reduce(f: (T, T) => T): T = withScope {
val cleanF = sc.clean(f)
val reducePartition: Iterator[T] => Option[T] = iter => {
if (iter.hasNext) {
Some(iter.reduceLeft(cleanF))
} else {
None
}
}
var jobResult: Option[T] = None
val mergeResult = (index: Int, taskResult: Option[T]) => {
if (taskResult.isDefined) {
jobResult = jobResult match {
case Some(value) => Some(f(value, taskResult.get))
case None => taskResult
}
}
}
sc.runJob(this, reducePartition, mergeResult)
// Get the final result out of our Option, or throw an exception if the RDD was empty
jobResult.getOrElse(throw new UnsupportedOperationException("empty collection"))
}
def runJob[T, U: ClassTag](
rdd: RDD[T],
processPartition: Iterator[T] => U,
resultHandler: (Int, U) => Unit)
{
val processFunc = (context: TaskContext, iter: Iterator[T]) => processPartition(iter)
runJob[T, U](rdd, processFunc, 0 until rdd.partitions.length, resultHandler)
}
2.SparkContext
def runJob[T, U: ClassTag](
rdd: RDD[T],
func: (TaskContext, Iterator[T]) => U,
partitions: Seq[Int],
resultHandler: (Int, U) => Unit): Unit = {
if (stopped.get()) {
throw new IllegalStateException("SparkContext has been shutdown")
}
val callSite = getCallSite
val cleanedFunc = clean(func)
logInfo("Starting job: " + callSite.shortForm)
if (conf.getBoolean("spark.logLineage", false)) {
logInfo("RDD's recursive dependencies:\n" + rdd.toDebugString)
}
dagScheduler.runJob(rdd, cleanedFunc, partitions, callSite, resultHandler, localProperties.get)
progressBar.foreach(_.finishAll())
rdd.doCheckpoint()
}
3.DAGSchedule
def runJob[T, U](
rdd: RDD[T],
func: (TaskContext, Iterator[T]) => U,
partitions: Seq[Int],
callSite: CallSite,
resultHandler: (Int, U) => Unit,
properties: Properties): Unit = {
val start = System.nanoTime
val waiter = submitJob(rdd, func, partitions, callSite, resultHandler, properties)
ThreadUtils.awaitReady(waiter.completionFuture, Duration.Inf)
waiter.completionFuture.value.get match {
case scala.util.Success(_) =>
logInfo("Job %d finished: %s, took %f s".format
(waiter.jobId, callSite.shortForm, (System.nanoTime - start) / 1e9))
case scala.util.Failure(exception) =>
logInfo("Job %d failed: %s, took %f s".format
(waiter.jobId, callSite.shortForm, (System.nanoTime - start) / 1e9))
// SPARK-8644: Include user stack trace in exceptions coming from DAGScheduler.
val callerStackTrace = Thread.currentThread().getStackTrace.tail
exception.setStackTrace(exception.getStackTrace ++ callerStackTrace)
throw exception
}
}
def submitJob[T, U](
rdd: RDD[T],
func: (TaskContext, Iterator[T]) => U,
partitions: Seq[Int],
callSite: CallSite,
resultHandler: (Int, U) => Unit,
properties: Properties): JobWaiter[U] = {
// Check to make sure we are not launching a task on a partition that does not exist.
val maxPartitions = rdd.partitions.length
partitions.find(p => p >= maxPartitions || p < 0).foreach { p =>
throw new IllegalArgumentException(
"Attempting to access a non-existent partition: " + p + ". " +
"Total number of partitions: " + maxPartitions)
}
val jobId = nextJobId.getAndIncrement()
if (partitions.size == 0) {
// Return immediately if the job is running 0 tasks
return new JobWaiter[U](this, jobId, 0, resultHandler)
}
assert(partitions.size > 0)
val func2 = func.asInstanceOf[(TaskContext, Iterator[_]) => _]
val waiter = new JobWaiter(this, jobId, partitions.size, resultHandler)
eventProcessLoop.post((
jobId, rdd, func2, partitions.toArray, callSite, waiter,
SerializationUtils.clone(properties)))
waiter
}
4.DAGSchedulerEventProcessLoop
override def onReceive(event: DAGSchedulerEvent): Unit = {
val timerContext = timer.time()
try {
doOnReceive(event)
} finally {
timerContext.stop()
}
}
private def doOnReceive(event: DAGSchedulerEvent): Unit = event match {
case JobSubmitted(jobId, rdd, func, partitions, callSite, listener, properties) =>
dagScheduler.handleJobSubmitted(jobId, rdd, func, partitions, callSite, listener, properties)
case MapStageSubmitted(jobId, dependency, callSite, listener, properties) =>
dagScheduler.handleMapStageSubmitted(jobId, dependency, callSite, listener, properties)
case StageCancelled(stageId, reason) =>
dagScheduler.handleStageCancellation(stageId, reason)
case JobCancelled(jobId, reason) =>
dagScheduler.handleJobCancellation(jobId, reason)
case JobGroupCancelled(groupId) =>
dagScheduler.handleJobGroupCancelled(groupId)
case AllJobsCancelled =>
dagScheduler.doCancelAllJobs()
case ExecutorAdded(execId, host) =>
dagScheduler.handleExecutorAdded(execId, host)
case ExecutorLost(execId, reason) =>
val workerLost = reason match {
case SlaveLost(_, true) => true
case _ => false
}
dagScheduler.handleExecutorLost(execId, workerLost)
case WorkerRemoved(workerId, host, message) =>
dagScheduler.handleWorkerRemoved(workerId, host, message)
case BeginEvent(task, taskInfo) =>
dagScheduler.handleBeginEvent(task, taskInfo)
case SpeculativeTaskSubmitted(task) =>
dagScheduler.handleSpeculativeTaskSubmitted(task)
case GettingResultEvent(taskInfo) =>
dagScheduler.handleGetTaskResult(taskInfo)
case completion: CompletionEvent =>
dagScheduler.handleTaskCompletion(completion)
case TaskSetFailed(taskSet, reason, exception) =>
dagScheduler.handleTaskSetFailed(taskSet, reason, exception)
case ResubmitFailedStages =>
dagScheduler.resubmitFailedStages()
}
5.DAGScheduler
M-submitStage 和 M-getMissingParentStages 构成spark stage划分
划分过程中创建stage 是 M-getOrCreateShuffleMapStage 第一次会创建,第二次就是从map中取(也就是从内存中取)
把一个app 划分成多个stage 使用M-submitMissingTasks 提交过去
M-submitStage
划分过程 ResultStage 是最后一个stage ,
假如ResultStage 依赖ShuffleMapStage B
ShuffleMapStage B 依赖ShuffleMapStage A
会优先提交A,提交后把 B 和Result 放入 waitingStages
M-submitMissingTasks
根据不同的Stage 将rdd 和 func 或者 stage.shuffleDep 封装到 taskBinaryBytes 最后更具不同的partition id放入Task 中 存入taskset 中
等A 运行完之后,最后一行
submitWaitingChildStages(stage)
M-submitWaitingChildStages
根据当前的stage 从waitingStages 找出当前的stage 的子stage
然后再次提交到 submitStage
M-getMissingParentStages
if (!mapStage.isAvailable) 则不为true 则不会再次提交
这个是获取mapOutputTrackerMaster 中 _numAvailableOutputs 数量是否和分区数相等。如果相等,则表示 该Stage 已经处理过
taskBinaryBytes = stage match {
case stage: ShuffleMapStage =>
JavaUtils.bufferToArray(
closureSerializer.serialize((stage.rdd, stage.shuffleDep): AnyRef))
case stage: ResultStage =>
JavaUtils.bufferToArray(closureSerializer.serialize((stage.rdd, stage.func): AnyRef))
}
taskBinary = sc.broadcast(taskBinaryBytes)
new ShuffleMapTask(stage.id, stage.latestInfo.attemptNumber,
taskBinary, part, locs, properties, serializedTaskMetrics, Option(jobId),
Option(sc.applicationId), sc.applicationAttemptId, stage.rdd.isBarrier())
new ResultTask(stage.id, stage.latestInfo.attemptNumber,
taskBinary, part, locs, id, properties, serializedTaskMetrics,
Option(jobId), Option(sc.applicationId), sc.applicationAttemptId,
stage.rdd.isBarrier())
private[scheduler] def handleJobSubmitted(jobId: Int,
finalRDD: RDD[_],
func: (TaskContext, Iterator[_]) => _,
partitions: Array[Int],
callSite: CallSite,
listener: JobListener,
properties: Properties) {
var finalStage: ResultStage = null
try {
// New stage creation may throw an exception if, for example, jobs are run on a
// HadoopRDD whose underlying HDFS files have been deleted.
finalStage = createResultStage(finalRDD, func, partitions, jobId, callSite)
} catch {
case e: BarrierJobSlotsNumberCheckFailed =>
logWarning(s"The job $jobId requires to run a barrier stage that requires more slots " +
"than the total number of slots in the cluster currently.")
// If jobId doesn't exist in the map, Scala coverts its value null to 0: Int automatically.
val numCheckFailures = barrierJobIdToNumTasksCheckFailures.compute(jobId,
new BiFunction[Int, Int, Int] {
override def apply(key: Int, value: Int): Int = value + 1
})
if (numCheckFailures <= maxFailureNumTasksCheck) {
messageScheduler.schedule(
new Runnable {
override def run(): Unit = eventProcessLoop.post(JobSubmitted(jobId, finalRDD, func,
partitions, callSite, listener, properties))
},
timeIntervalNumTasksCheck,
TimeUnit.SECONDS
)
return
} else {
// Job failed, clear internal data.
barrierJobIdToNumTasksCheckFailures.remove(jobId)
listener.jobFailed(e)
return
}
case e: Exception =>
logWarning("Creating new stage failed due to exception - job: " + jobId, e)
listener.jobFailed(e)
return
}
// Job submitted, clear internal data.
barrierJobIdToNumTasksCheckFailures.remove(jobId)
val job = new ActiveJob(jobId, finalStage, callSite, listener, properties)
clearCacheLocs()
logInfo("Got job %s (%s) with %d output partitions".format(
job.jobId, callSite.shortForm, partitions.length))
logInfo("Final stage: " + finalStage + " (" + finalStage.name + ")")
logInfo("Parents of final stage: " + finalStage.parents)
logInfo("Missing parents: " + getMissingParentStages(finalStage))
val jobSubmissionTime = clock.getTimeMillis()
jobIdToActiveJob(jobId) = job
activeJobs += job
finalStage.setActiveJob(job)
val stageIds = jobIdToStageIds(jobId).toArray
val stageInfos = stageIds.flatMap(id => stageIdToStage.get(id).map(_.latestInfo))
listenerBus.post(
SparkListenerJobStart(job.jobId, jobSubmissionTime, stageInfos, properties))
submitStage(finalStage)
}
private def submitStage(stage: Stage) {
val jobId = activeJobForStage(stage)
if (jobId.isDefined) {
logDebug("submitStage(" + stage + ")")
if (!waitingStages(stage) && !runningStages(stage) && !failedStages(stage)) {
val missing = getMissingParentStages(stage).sortBy(_.id)
logDebug("missing: " + missing)
if (missing.isEmpty) {
logInfo("Submitting " + stage + " (" + stage.rdd + "), which has no missing parents")
submitMissingTasks(stage, jobId.get)
} else {
for (parent <- missing) {
submitStage(parent)
}
waitingStages += stage
}
}
} else {
abortStage(stage, "No active job for stage " + stage.id, None)
}
}
private def getMissingParentStages(stage: Stage): List[Stage] = {
val missing = new HashSet[Stage]
val visited = new HashSet[RDD[_]]
// We are manually maintaining a stack here to prevent StackOverflowError
// caused by recursively visiting
val waitingForVisit = new ArrayStack[RDD[_]]
def visit(rdd: RDD[_]) {
if (!visited(rdd)) {
visited += rdd
val rddHasUncachedPartitions = getCacheLocs(rdd).contains(Nil)
if (rddHasUncachedPartitions) {
for (dep <- rdd.dependencies) {
dep match {
case shufDep: ShuffleDependency[_, _, _] =>
val mapStage = getOrCreateShuffleMapStage(shufDep, stage.firstJobId)
if (!mapStage.isAvailable) {
missing += mapStage
}
case narrowDep: NarrowDependency[_] =>
waitingForVisit.push(narrowDep.rdd)
}
}
}
}
}
waitingForVisit.push(stage.rdd)
while (waitingForVisit.nonEmpty) {
visit(waitingForVisit.pop())
}
missing.toList
}
private def submitMissingTasks(stage: Stage, jobId: Int) {
logDebug("submitMissingTasks(" + stage + ")")
// First figure out the indexes of partition ids to compute.
val partitionsToCompute: Seq[Int] = stage.findMissingPartitions()
// Use the scheduling pool, job group, description, etc. from an ActiveJob associated
// with this Stage
val properties = jobIdToActiveJob(jobId).properties
runningStages += stage
// SparkListenerStageSubmitted should be posted before testing whether tasks are
// serializable. If tasks are not serializable, a SparkListenerStageCompleted event
// will be posted, which should always come after a corresponding SparkListenerStageSubmitted
// event.
stage match {
case s: ShuffleMapStage =>
outputCommitCoordinator.stageStart(stage = s.id, maxPartitionId = s.numPartitions - 1)
case s: ResultStage =>
outputCommitCoordinator.stageStart(
stage = s.id, maxPartitionId = s.rdd.partitions.length - 1)
}
val taskIdToLocations: Map[Int, Seq[TaskLocation]] = try {
stage match {
case s: ShuffleMapStage =>
partitionsToCompute.map { id => (id, getPreferredLocs(stage.rdd, id))}.toMap
case s: ResultStage =>
partitionsToCompute.map { id =>
val p = s.partitions(id)
(id, getPreferredLocs(stage.rdd, p))
}.toMap
}
} catch {
case NonFatal(e) =>
stage.makeNewStageAttempt(partitionsToCompute.size)
listenerBus.post(SparkListenerStageSubmitted(stage.latestInfo, properties))
abortStage(stage, s"Task creation failed: $e\n${Utils.exceptionString(e)}", Some(e))
runningStages -= stage
return
}
stage.makeNewStageAttempt(partitionsToCompute.size, taskIdToLocations.values.toSeq)
// If there are tasks to execute, record the submission time of the stage. Otherwise,
// post the even without the submission time, which indicates that this stage was
// skipped.
if (partitionsToCompute.nonEmpty) {
stage.latestInfo.submissionTime = Some(clock.getTimeMillis())
}
listenerBus.post(SparkListenerStageSubmitted(stage.latestInfo, properties))
// TODO: Maybe we can keep the taskBinary in Stage to avoid serializing it multiple times.
// Broadcasted binary for the task, used to dispatch tasks to executors. Note that we broadcast
// the serialized copy of the RDD and for each task we will deserialize it, which means each
// task gets a different copy of the RDD. This provides stronger isolation between tasks that
// might modify state of objects referenced in their closures. This is necessary in Hadoop
// where the JobConf/Configuration object is not thread-safe.
var taskBinary: Broadcast[Array[Byte]] = null
var partitions: Array[Partition] = null
try {
// For ShuffleMapTask, serialize and broadcast (rdd, shuffleDep).
// For ResultTask, serialize and broadcast (rdd, func).
var taskBinaryBytes: Array[Byte] = null
// taskBinaryBytes and partitions are both effected by the checkpoint status. We need
// this synchronization in case another concurrent job is checkpointing this RDD, so we get a
// consistent view of both variables.
RDDCheckpointData.synchronized {
taskBinaryBytes = stage match {
case stage: ShuffleMapStage =>
JavaUtils.bufferToArray(
closureSerializer.serialize((stage.rdd, stage.shuffleDep): AnyRef))
case stage: ResultStage =>
JavaUtils.bufferToArray(closureSerializer.serialize((stage.rdd, stage.func): AnyRef))
}
partitions = stage.rdd.partitions
}
taskBinary = sc.broadcast(taskBinaryBytes)
} catch {
// In the case of a failure during serialization, abort the stage.
case e: NotSerializableException =>
abortStage(stage, "Task not serializable: " + e.toString, Some(e))
runningStages -= stage
// Abort execution
return
case NonFatal(e) =>
abortStage(stage, s"Task serialization failed: $e\n${Utils.exceptionString(e)}", Some(e))
runningStages -= stage
return
}
val tasks: Seq[Task[_]] = try {
val serializedTaskMetrics = closureSerializer.serialize(stage.latestInfo.taskMetrics).array()
stage match {
case stage: ShuffleMapStage =>
stage.pendingPartitions.clear()
partitionsToCompute.map { id =>
val locs = taskIdToLocations(id)
val part = partitions(id)
stage.pendingPartitions += id
new ShuffleMapTask(stage.id, stage.latestInfo.attemptNumber,
taskBinary, part, locs, properties, serializedTaskMetrics, Option(jobId),
Option(sc.applicationId), sc.applicationAttemptId, stage.rdd.isBarrier())
}
case stage: ResultStage =>
partitionsToCompute.map { id =>
val p: Int = stage.partitions(id)
val part = partitions(p)
val locs = taskIdToLocations(id)
new ResultTask(stage.id, stage.latestInfo.attemptNumber,
taskBinary, part, locs, id, properties, serializedTaskMetrics,
Option(jobId), Option(sc.applicationId), sc.applicationAttemptId,
stage.rdd.isBarrier())
}
}
} catch {
case NonFatal(e) =>
abortStage(stage, s"Task creation failed: $e\n${Utils.exceptionString(e)}", Some(e))
runningStages -= stage
return
}
if (tasks.size > 0) {
logInfo(s"Submitting ${tasks.size} missing tasks from $stage (${stage.rdd}) (first 15 " +
s"tasks are for partitions ${tasks.take(15).map(_.partitionId)})")
taskScheduler.submitTasks(new TaskSet(
tasks.toArray, stage.id, stage.latestInfo.attemptNumber, jobId, properties))
} else {
// Because we posted SparkListenerStageSubmitted earlier, we should mark
// the stage as completed here in case there are no tasks to run
markStageAsFinished(stage, None)
stage match {
case stage: ShuffleMapStage =>
logDebug(s"Stage ${stage} is actually done; " +
s"(available: ${stage.isAvailable}," +
s"available outputs: ${stage.numAvailableOutputs}," +
s"partitions: ${stage.numPartitions})")
markMapStageJobsAsFinished(stage)
case stage : ResultStage =>
logDebug(s"Stage ${stage} is actually done; (partitions: ${stage.numPartitions})")
}
submitWaitingChildStages(stage)
}
}
private def submitWaitingChildStages(parent: Stage) {
logTrace(s"Checking if any dependencies of $parent are now runnable")
logTrace("running: " + runningStages)
logTrace("waiting: " + waitingStages)
logTrace("failed: " + failedStages)
val childStages = waitingStages.filter(_.parents.contains(parent)).toArray
waitingStages --= childStages
for (stage <- childStages.sortBy(_.firstJobId)) {
submitStage(stage)
}
}
6.TaskScheduleImpl
这部实际是对taskset 进行封装成TaskSetManager 放入队列
override def submitTasks(taskSet: TaskSet) {
val tasks = taskSet.tasks
logInfo("Adding task set " + taskSet.id + " with " + tasks.length + " tasks")
this.synchronized {
val manager = createTaskSetManager(taskSet, maxTaskFailures)
val stage = taskSet.stageId
val stageTaskSets =
taskSetsByStageIdAndAttempt.getOrElseUpdate(stage, new HashMap[Int, TaskSetManager])
stageTaskSets(taskSet.stageAttemptId) = manager
val conflictingTaskSet = stageTaskSets.exists { case (_, ts) =>
ts.taskSet != taskSet && !ts.isZombie
}
if (conflictingTaskSet) {
throw new IllegalStateException(s"more than one active taskSet for stage $stage:" +
s" ${stageTaskSets.toSeq.map{_._2.taskSet.id}.mkString(",")}")
}
//这一步实际上把taskset放入调度队列中
schedulableBuilder.addTaskSetManager(manager, manager.taskSet.properties)
if (!isLocal && !hasReceivedTask) {
starvationTimer.scheduleAtFixedRate(new TimerTask() {
override def run() {
if (!hasLaunchedTask) {
logWarning("Initial job has not accepted any resources; " +
"check your cluster UI to ensure that workers are registered " +
"and have sufficient resources")
} else {
this.cancel()
}
}
}, STARVATION_TIMEOUT_MS, STARVATION_TIMEOUT_MS)
}
hasReceivedTask = true
}
//通知 StandaloneSchedulerBackend 进行通知,对任务队列中的task 进行分配executor
backend.reviveOffers()
}
7.FIFOSchedulableBuilder
//将TaskSetManager 放入调度队列中
override def addTaskSetManager(manager: Schedulable, properties: Properties) {
rootPool.addSchedulable(manager)
}
8.CoarseGrainedSchedulerBackend
主要是对executor进行过滤,然后executor 和 task 分配
最后启动task,也就是向executor 发送launchtask 的消息
launchTask 其实发送的是TaskDescription,TaskDescription 包含了 task 和 executor 信息
TaskSetManager 生成的 TaskDescription
private def makeOffers() {
// Make sure no executor is killed while some task is launching on it
val taskDescs = CoarseGrainedSchedulerBackend.this.synchronized {
// Filter out executors under killing
val activeExecutors = executorDataMap.filterKeys(executorIsAlive)
val workOffers = activeExecutors.map {
case (id, executorData) =>
new WorkerOffer(id, executorData.executorHost, executorData.freeCores,
Some(executorData.executorAddress.hostPort))
}.toIndexedSeq
scheduler.resourceOffers(workOffers)
}
if (!taskDescs.isEmpty) {
launchTasks(taskDescs)
}
}
def resourceOffers(offers: IndexedSeq[WorkerOffer]): Seq[Seq[TaskDescription]] = synchronized {
// Mark each slave as alive and remember its hostname
// Also track if new executor is added
var newExecAvail = false
for (o <- offers) {
if (!hostToExecutors.contains(o.host)) {
hostToExecutors(o.host) = new HashSet[String]()
}
if (!executorIdToRunningTaskIds.contains(o.executorId)) {
hostToExecutors(o.host) += o.executorId
executorAdded(o.executorId, o.host)
executorIdToHost(o.executorId) = o.host
executorIdToRunningTaskIds(o.executorId) = HashSet[Long]()
newExecAvail = true
}
for (rack <- getRackForHost(o.host)) {
hostsByRack.getOrElseUpdate(rack, new HashSet[String]()) += o.host
}
}
// Before making any offers, remove any nodes from the blacklist whose blacklist has expired. Do
// this here to avoid a separate thread and added synchronization overhead, and also because
// updating the blacklist is only relevant when task offers are being made.
blacklistTrackerOpt.foreach(_.applyBlacklistTimeout())
val filteredOffers = blacklistTrackerOpt.map { blacklistTracker =>
offers.filter { offer =>
!blacklistTracker.isNodeBlacklisted(offer.host) &&
!blacklistTracker.isExecutorBlacklisted(offer.executorId)
}
}.getOrElse(offers)
val shuffledOffers = shuffleOffers(filteredOffers)
// Build a list of tasks to assign to each worker.
val tasks = shuffledOffers.map(o => new ArrayBuffer[TaskDescription](o.cores / CPUS_PER_TASK))
val availableCpus = shuffledOffers.map(o => o.cores).toArray
val availableSlots = shuffledOffers.map(o => o.cores / CPUS_PER_TASK).sum
val sortedTaskSets = rootPool.getSortedTaskSetQueue
for (taskSet <- sortedTaskSets) {
logDebug("parentName: %s, name: %s, runningTasks: %s".format(
taskSet.parent.name, taskSet.name, taskSet.runningTasks))
if (newExecAvail) {
taskSet.executorAdded()
}
}
// Take each TaskSet in our scheduling order, and then offer it each node in increasing order
// of locality levels so that it gets a chance to launch local tasks on all of them.
// NOTE: the preferredLocality order: PROCESS_LOCAL, NODE_LOCAL, NO_PREF, RACK_LOCAL, ANY
for (taskSet <- sortedTaskSets) {
// Skip the barrier taskSet if the available slots are less than the number of pending tasks.
if (taskSet.isBarrier && availableSlots < taskSet.numTasks) {
// Skip the launch process.
// TODO SPARK-24819 If the job requires more slots than available (both busy and free
// slots), fail the job on submit.
logInfo(s"Skip current round of resource offers for barrier stage ${taskSet.stageId} " +
s"because the barrier taskSet requires ${taskSet.numTasks} slots, while the total " +
s"number of available slots is $availableSlots.")
} else {
var launchedAnyTask = false
// Record all the executor IDs assigned barrier tasks on.
val addressesWithDescs = ArrayBuffer[(String, TaskDescription)]()
for (currentMaxLocality <- taskSet.myLocalityLevels) {
var launchedTaskAtCurrentMaxLocality = false
do {
launchedTaskAtCurrentMaxLocality = resourceOfferSingleTaskSet(taskSet,
currentMaxLocality, shuffledOffers, availableCpus, tasks, addressesWithDescs)
launchedAnyTask |= launchedTaskAtCurrentMaxLocality
} while (launchedTaskAtCurrentMaxLocality)
}
if (!launchedAnyTask) {
taskSet.getCompletelyBlacklistedTaskIfAny(hostToExecutors).foreach { taskIndex =>
// If the taskSet is unschedulable we try to find an existing idle blacklisted
// executor. If we cannot find one, we abort immediately. Else we kill the idle
// executor and kick off an abortTimer which if it doesn't schedule a task within the
// the timeout will abort the taskSet if we were unable to schedule any task from the
// taskSet.
// Note 1: We keep track of schedulability on a per taskSet basis rather than on a per
// task basis.
// Note 2: The taskSet can still be aborted when there are more than one idle
// blacklisted executors and dynamic allocation is on. This can happen when a killed
// idle executor isn't replaced in time by ExecutorAllocationManager as it relies on
// pending tasks and doesn't kill executors on idle timeouts, resulting in the abort
// timer to expire and abort the taskSet.
executorIdToRunningTaskIds.find(x => !isExecutorBusy(x._1)) match {
case Some ((executorId, _)) =>
if (!unschedulableTaskSetToExpiryTime.contains(taskSet)) {
blacklistTrackerOpt.foreach(blt => blt.killBlacklistedIdleExecutor(executorId))
val timeout = conf.get(config.UNSCHEDULABLE_TASKSET_TIMEOUT) * 1000
unschedulableTaskSetToExpiryTime(taskSet) = clock.getTimeMillis() + timeout
logInfo(s"Waiting for $timeout ms for completely "
+ s"blacklisted task to be schedulable again before aborting $taskSet.")
abortTimer.schedule(
createUnschedulableTaskSetAbortTimer(taskSet, taskIndex), timeout)
}
case None => // Abort Immediately
logInfo("Cannot schedule any task because of complete blacklisting. No idle" +
s" executors can be found to kill. Aborting $taskSet." )
taskSet.abortSinceCompletelyBlacklisted(taskIndex)
}
}
} else {
// We want to defer killing any taskSets as long as we have a non blacklisted executor
// which can be used to schedule a task from any active taskSets. This ensures that the
// job can make progress.
// Note: It is theoretically possible that a taskSet never gets scheduled on a
// non-blacklisted executor and the abort timer doesn't kick in because of a constant
// submission of new TaskSets. See the PR for more details.
if (unschedulableTaskSetToExpiryTime.nonEmpty) {
logInfo("Clearing the expiry times for all unschedulable taskSets as a task was " +
"recently scheduled.")
unschedulableTaskSetToExpiryTime.clear()
}
}
if (launchedAnyTask && taskSet.isBarrier) {
// Check whether the barrier tasks are partially launched.
// TODO SPARK-24818 handle the assert failure case (that can happen when some locality
// requirements are not fulfilled, and we should revert the launched tasks).
require(addressesWithDescs.size == taskSet.numTasks,
s"Skip current round of resource offers for barrier stage ${taskSet.stageId} " +
s"because only ${addressesWithDescs.size} out of a total number of " +
s"${taskSet.numTasks} tasks got resource offers. The resource offers may have " +
"been blacklisted or cannot fulfill task locality requirements.")
// materialize the barrier coordinator.
maybeInitBarrierCoordinator()
// Update the taskInfos into all the barrier task properties.
val addressesStr = addressesWithDescs
// Addresses ordered by partitionId
.sortBy(_._2.partitionId)
.map(_._1)
.mkString(",")
addressesWithDescs.foreach(_._2.properties.setProperty("addresses", addressesStr))
logInfo(s"Successfully scheduled all the ${addressesWithDescs.size} tasks for barrier " +
s"stage ${taskSet.stageId}.")
}
}
}
// TODO SPARK-24823 Cancel a job that contains barrier stage(s) if the barrier tasks don't get
// launched within a configured time.
if (tasks.size > 0) {
hasLaunchedTask = true
}
return tasks
}
private def launchTasks(tasks: Seq[Seq[TaskDescription]]) {
for (task <- tasks.flatten) {
val serializedTask = TaskDescription.encode(task)
if (serializedTask.limit() >= maxRpcMessageSize) {
Option(scheduler.taskIdToTaskSetManager.get(task.taskId)).foreach { taskSetMgr =>
try {
var msg = "Serialized task %s:%d was %d bytes, which exceeds max allowed: " +
"spark.rpc.message.maxSize (%d bytes). Consider increasing " +
"spark.rpc.message.maxSize or using broadcast variables for large values."
msg = msg.format(task.taskId, task.index, serializedTask.limit(), maxRpcMessageSize)
taskSetMgr.abort(msg)
} catch {
case e: Exception => logError("Exception in error callback", e)
}
}
}
else {
val executorData = executorDataMap(task.executorId)
executorData.freeCores -= scheduler.CPUS_PER_TASK
logDebug(s"Launching task ${task.taskId} on executor id: ${task.executorId} hostname: " +
s"${executorData.executorHost}.")
executorData.executorEndpoint.send(LaunchTask(new SerializableBuffer(serializedTask)))
}
}
}
1.Rdd
rdd中 reduce、fold、aggregate 这些ShuffleTask 还有collect、count这些finalTask 都会调用 sparkContext.runJob
def reduce(f: (T, T) => T): T = withScope {
val cleanF = sc.clean(f)
val reducePartition: Iterator[T] => Option[T] = iter => {
if (iter.hasNext) {
Some(iter.reduceLeft(cleanF))
} else {
None
}
}
var jobResult: Option[T] = None
val mergeResult = (index: Int, taskResult: Option[T]) => {
if (taskResult.isDefined) {
jobResult = jobResult match {
case Some(value) => Some(f(value, taskResult.get))
case None => taskResult
}
}
}
sc.runJob(this, reducePartition, mergeResult)
// Get the final result out of our Option, or throw an exception if the RDD was empty
jobResult.getOrElse(throw new UnsupportedOperationException("empty collection"))
}
def runJob[T, U: ClassTag](
rdd: RDD[T],
processPartition: Iterator[T] => U,
resultHandler: (Int, U) => Unit)
{
val processFunc = (context: TaskContext, iter: Iterator[T]) => processPartition(iter)
runJob[T, U](rdd, processFunc, 0 until rdd.partitions.length, resultHandler)
}
2.SparkContext
def runJob[T, U: ClassTag](
rdd: RDD[T],
func: (TaskContext, Iterator[T]) => U,
partitions: Seq[Int],
resultHandler: (Int, U) => Unit): Unit = {
if (stopped.get()) {
throw new IllegalStateException("SparkContext has been shutdown")
}
val callSite = getCallSite
val cleanedFunc = clean(func)
logInfo("Starting job: " + callSite.shortForm)
if (conf.getBoolean("spark.logLineage", false)) {
logInfo("RDD's recursive dependencies:\n" + rdd.toDebugString)
}
dagScheduler.runJob(rdd, cleanedFunc, partitions, callSite, resultHandler, localProperties.get)
progressBar.foreach(_.finishAll())
rdd.doCheckpoint()
}
3.DAGSchedule
def runJob[T, U](
rdd: RDD[T],
func: (TaskContext, Iterator[T]) => U,
partitions: Seq[Int],
callSite: CallSite,
resultHandler: (Int, U) => Unit,
properties: Properties): Unit = {
val start = System.nanoTime
val waiter = submitJob(rdd, func, partitions, callSite, resultHandler, properties)
ThreadUtils.awaitReady(waiter.completionFuture, Duration.Inf)
waiter.completionFuture.value.get match {
case scala.util.Success(_) =>
logInfo("Job %d finished: %s, took %f s".format
(waiter.jobId, callSite.shortForm, (System.nanoTime - start) / 1e9))
case scala.util.Failure(exception) =>
logInfo("Job %d failed: %s, took %f s".format
(waiter.jobId, callSite.shortForm, (System.nanoTime - start) / 1e9))
// SPARK-8644: Include user stack trace in exceptions coming from DAGScheduler.
val callerStackTrace = Thread.currentThread().getStackTrace.tail
exception.setStackTrace(exception.getStackTrace ++ callerStackTrace)
throw exception
}
}
def submitJob[T, U](
rdd: RDD[T],
func: (TaskContext, Iterator[T]) => U,
partitions: Seq[Int],
callSite: CallSite,
resultHandler: (Int, U) => Unit,
properties: Properties): JobWaiter[U] = {
// Check to make sure we are not launching a task on a partition that does not exist.
val maxPartitions = rdd.partitions.length
partitions.find(p => p >= maxPartitions || p < 0).foreach { p =>
throw new IllegalArgumentException(
"Attempting to access a non-existent partition: " + p + ". " +
"Total number of partitions: " + maxPartitions)
}
val jobId = nextJobId.getAndIncrement()
if (partitions.size == 0) {
// Return immediately if the job is running 0 tasks
return new JobWaiter[U](this, jobId, 0, resultHandler)
}
assert(partitions.size > 0)
val func2 = func.asInstanceOf[(TaskContext, Iterator[_]) => _]
val waiter = new JobWaiter(this, jobId, partitions.size, resultHandler)
eventProcessLoop.post((
jobId, rdd, func2, partitions.toArray, callSite, waiter,
SerializationUtils.clone(properties)))
waiter
}
4.DAGSchedulerEventProcessLoop
override def onReceive(event: DAGSchedulerEvent): Unit = {
val timerContext = timer.time()
try {
doOnReceive(event)
} finally {
timerContext.stop()
}
}
private def doOnReceive(event: DAGSchedulerEvent): Unit = event match {
case JobSubmitted(jobId, rdd, func, partitions, callSite, listener, properties) =>
dagScheduler.handleJobSubmitted(jobId, rdd, func, partitions, callSite, listener, properties)
case MapStageSubmitted(jobId, dependency, callSite, listener, properties) =>
dagScheduler.handleMapStageSubmitted(jobId, dependency, callSite, listener, properties)
case StageCancelled(stageId, reason) =>
dagScheduler.handleStageCancellation(stageId, reason)
case JobCancelled(jobId, reason) =>
dagScheduler.handleJobCancellation(jobId, reason)
case JobGroupCancelled(groupId) =>
dagScheduler.handleJobGroupCancelled(groupId)
case AllJobsCancelled =>
dagScheduler.doCancelAllJobs()
case ExecutorAdded(execId, host) =>
dagScheduler.handleExecutorAdded(execId, host)
case ExecutorLost(execId, reason) =>
val workerLost = reason match {
case SlaveLost(_, true) => true
case _ => false
}
dagScheduler.handleExecutorLost(execId, workerLost)
case WorkerRemoved(workerId, host, message) =>
dagScheduler.handleWorkerRemoved(workerId, host, message)
case BeginEvent(task, taskInfo) =>
dagScheduler.handleBeginEvent(task, taskInfo)
case SpeculativeTaskSubmitted(task) =>
dagScheduler.handleSpeculativeTaskSubmitted(task)
case GettingResultEvent(taskInfo) =>
dagScheduler.handleGetTaskResult(taskInfo)
case completion: CompletionEvent =>
dagScheduler.handleTaskCompletion(completion)
case TaskSetFailed(taskSet, reason, exception) =>
dagScheduler.handleTaskSetFailed(taskSet, reason, exception)
case ResubmitFailedStages =>
dagScheduler.resubmitFailedStages()
}
5.DAGScheduler
M-submitStage 和 M-getMissingParentStages 构成spark stage划分
划分过程中创建stage 是 M-getOrCreateShuffleMapStage 第一次会创建,第二次就是从map中取(也就是从内存中取)
把一个app 划分成多个stage 使用M-submitMissingTasks 提交过去
M-submitStage
划分过程 ResultStage 是最后一个stage ,
假如ResultStage 依赖ShuffleMapStage B
ShuffleMapStage B 依赖ShuffleMapStage A
会优先提交A,提交后把 B 和Result 放入 waitingStages
M-submitMissingTasks
根据不同的Stage 将rdd 和 func 或者 stage.shuffleDep 封装到 taskBinaryBytes 最后更具不同的partition id放入Task 中 存入taskset 中
等A 运行完之后,最后一行
submitWaitingChildStages(stage)
M-submitWaitingChildStages
根据当前的stage 从waitingStages 找出当前的stage 的子stage
然后再次提交到 submitStage
M-getMissingParentStages
if (!mapStage.isAvailable) 则不为true 则不会再次提交
这个是获取mapOutputTrackerMaster 中 _numAvailableOutputs 数量是否和分区数相等。如果相等,则表示 该Stage 已经处理过
taskBinaryBytes = stage match {
case stage: ShuffleMapStage =>
JavaUtils.bufferToArray(
closureSerializer.serialize((stage.rdd, stage.shuffleDep): AnyRef))
case stage: ResultStage =>
JavaUtils.bufferToArray(closureSerializer.serialize((stage.rdd, stage.func): AnyRef))
}
taskBinary = sc.broadcast(taskBinaryBytes)
new ShuffleMapTask(stage.id, stage.latestInfo.attemptNumber,
taskBinary, part, locs, properties, serializedTaskMetrics, Option(jobId),
Option(sc.applicationId), sc.applicationAttemptId, stage.rdd.isBarrier())
new ResultTask(stage.id, stage.latestInfo.attemptNumber,
taskBinary, part, locs, id, properties, serializedTaskMetrics,
Option(jobId), Option(sc.applicationId), sc.applicationAttemptId,
stage.rdd.isBarrier())
private[scheduler] def handleJobSubmitted(jobId: Int,
finalRDD: RDD[_],
func: (TaskContext, Iterator[_]) => _,
partitions: Array[Int],
callSite: CallSite,
listener: JobListener,
properties: Properties) {
var finalStage: ResultStage = null
try {
// New stage creation may throw an exception if, for example, jobs are run on a
// HadoopRDD whose underlying HDFS files have been deleted.
finalStage = createResultStage(finalRDD, func, partitions, jobId, callSite)
} catch {
case e: BarrierJobSlotsNumberCheckFailed =>
logWarning(s"The job $jobId requires to run a barrier stage that requires more slots " +
"than the total number of slots in the cluster currently.")
// If jobId doesn't exist in the map, Scala coverts its value null to 0: Int automatically.
val numCheckFailures = barrierJobIdToNumTasksCheckFailures.compute(jobId,
new BiFunction[Int, Int, Int] {
override def apply(key: Int, value: Int): Int = value + 1
})
if (numCheckFailures <= maxFailureNumTasksCheck) {
messageScheduler.schedule(
new Runnable {
override def run(): Unit = eventProcessLoop.post(JobSubmitted(jobId, finalRDD, func,
partitions, callSite, listener, properties))
},
timeIntervalNumTasksCheck,
TimeUnit.SECONDS
)
return
} else {
// Job failed, clear internal data.
barrierJobIdToNumTasksCheckFailures.remove(jobId)
listener.jobFailed(e)
return
}
case e: Exception =>
logWarning("Creating new stage failed due to exception - job: " + jobId, e)
listener.jobFailed(e)
return
}
// Job submitted, clear internal data.
barrierJobIdToNumTasksCheckFailures.remove(jobId)
val job = new ActiveJob(jobId, finalStage, callSite, listener, properties)
clearCacheLocs()
logInfo("Got job %s (%s) with %d output partitions".format(
job.jobId, callSite.shortForm, partitions.length))
logInfo("Final stage: " + finalStage + " (" + finalStage.name + ")")
logInfo("Parents of final stage: " + finalStage.parents)
logInfo("Missing parents: " + getMissingParentStages(finalStage))
val jobSubmissionTime = clock.getTimeMillis()
jobIdToActiveJob(jobId) = job
activeJobs += job
finalStage.setActiveJob(job)
val stageIds = jobIdToStageIds(jobId).toArray
val stageInfos = stageIds.flatMap(id => stageIdToStage.get(id).map(_.latestInfo))
listenerBus.post(
SparkListenerJobStart(job.jobId, jobSubmissionTime, stageInfos, properties))
submitStage(finalStage)
}
private def submitStage(stage: Stage) {
val jobId = activeJobForStage(stage)
if (jobId.isDefined) {
logDebug("submitStage(" + stage + ")")
if (!waitingStages(stage) && !runningStages(stage) && !failedStages(stage)) {
val missing = getMissingParentStages(stage).sortBy(_.id)
logDebug("missing: " + missing)
if (missing.isEmpty) {
logInfo("Submitting " + stage + " (" + stage.rdd + "), which has no missing parents")
submitMissingTasks(stage, jobId.get)
} else {
for (parent <- missing) {
submitStage(parent)
}
waitingStages += stage
}
}
} else {
abortStage(stage, "No active job for stage " + stage.id, None)
}
}
private def getMissingParentStages(stage: Stage): List[Stage] = {
val missing = new HashSet[Stage]
val visited = new HashSet[RDD[_]]
// We are manually maintaining a stack here to prevent StackOverflowError
// caused by recursively visiting
val waitingForVisit = new ArrayStack[RDD[_]]
def visit(rdd: RDD[_]) {
if (!visited(rdd)) {
visited += rdd
val rddHasUncachedPartitions = getCacheLocs(rdd).contains(Nil)
if (rddHasUncachedPartitions) {
for (dep <- rdd.dependencies) {
dep match {
case shufDep: ShuffleDependency[_, _, _] =>
val mapStage = getOrCreateShuffleMapStage(shufDep, stage.firstJobId)
if (!mapStage.isAvailable) {
missing += mapStage
}
case narrowDep: NarrowDependency[_] =>
waitingForVisit.push(narrowDep.rdd)
}
}
}
}
}
waitingForVisit.push(stage.rdd)
while (waitingForVisit.nonEmpty) {
visit(waitingForVisit.pop())
}
missing.toList
}
private def submitMissingTasks(stage: Stage, jobId: Int) {
logDebug("submitMissingTasks(" + stage + ")")
// First figure out the indexes of partition ids to compute.
val partitionsToCompute: Seq[Int] = stage.findMissingPartitions()
// Use the scheduling pool, job group, description, etc. from an ActiveJob associated
// with this Stage
val properties = jobIdToActiveJob(jobId).properties
runningStages += stage
// SparkListenerStageSubmitted should be posted before testing whether tasks are
// serializable. If tasks are not serializable, a SparkListenerStageCompleted event
// will be posted, which should always come after a corresponding SparkListenerStageSubmitted
// event.
stage match {
case s: ShuffleMapStage =>
outputCommitCoordinator.stageStart(stage = s.id, maxPartitionId = s.numPartitions - 1)
case s: ResultStage =>
outputCommitCoordinator.stageStart(
stage = s.id, maxPartitionId = s.rdd.partitions.length - 1)
}
val taskIdToLocations: Map[Int, Seq[TaskLocation]] = try {
stage match {
case s: ShuffleMapStage =>
partitionsToCompute.map { id => (id, getPreferredLocs(stage.rdd, id))}.toMap
case s: ResultStage =>
partitionsToCompute.map { id =>
val p = s.partitions(id)
(id, getPreferredLocs(stage.rdd, p))
}.toMap
}
} catch {
case NonFatal(e) =>
stage.makeNewStageAttempt(partitionsToCompute.size)
listenerBus.post(SparkListenerStageSubmitted(stage.latestInfo, properties))
abortStage(stage, s"Task creation failed: $e\n${Utils.exceptionString(e)}", Some(e))
runningStages -= stage
return
}
stage.makeNewStageAttempt(partitionsToCompute.size, taskIdToLocations.values.toSeq)
// If there are tasks to execute, record the submission time of the stage. Otherwise,
// post the even without the submission time, which indicates that this stage was
// skipped.
if (partitionsToCompute.nonEmpty) {
stage.latestInfo.submissionTime = Some(clock.getTimeMillis())
}
listenerBus.post(SparkListenerStageSubmitted(stage.latestInfo, properties))
// TODO: Maybe we can keep the taskBinary in Stage to avoid serializing it multiple times.
// Broadcasted binary for the task, used to dispatch tasks to executors. Note that we broadcast
// the serialized copy of the RDD and for each task we will deserialize it, which means each
// task gets a different copy of the RDD. This provides stronger isolation between tasks that
// might modify state of objects referenced in their closures. This is necessary in Hadoop
// where the JobConf/Configuration object is not thread-safe.
var taskBinary: Broadcast[Array[Byte]] = null
var partitions: Array[Partition] = null
try {
// For ShuffleMapTask, serialize and broadcast (rdd, shuffleDep).
// For ResultTask, serialize and broadcast (rdd, func).
var taskBinaryBytes: Array[Byte] = null
// taskBinaryBytes and partitions are both effected by the checkpoint status. We need
// this synchronization in case another concurrent job is checkpointing this RDD, so we get a
// consistent view of both variables.
RDDCheckpointData.synchronized {
taskBinaryBytes = stage match {
case stage: ShuffleMapStage =>
JavaUtils.bufferToArray(
closureSerializer.serialize((stage.rdd, stage.shuffleDep): AnyRef))
case stage: ResultStage =>
JavaUtils.bufferToArray(closureSerializer.serialize((stage.rdd, stage.func): AnyRef))
}
partitions = stage.rdd.partitions
}
taskBinary = sc.broadcast(taskBinaryBytes)
} catch {
// In the case of a failure during serialization, abort the stage.
case e: NotSerializableException =>
abortStage(stage, "Task not serializable: " + e.toString, Some(e))
runningStages -= stage
// Abort execution
return
case NonFatal(e) =>
abortStage(stage, s"Task serialization failed: $e\n${Utils.exceptionString(e)}", Some(e))
runningStages -= stage
return
}
val tasks: Seq[Task[_]] = try {
val serializedTaskMetrics = closureSerializer.serialize(stage.latestInfo.taskMetrics).array()
stage match {
case stage: ShuffleMapStage =>
stage.pendingPartitions.clear()
partitionsToCompute.map { id =>
val locs = taskIdToLocations(id)
val part = partitions(id)
stage.pendingPartitions += id
new ShuffleMapTask(stage.id, stage.latestInfo.attemptNumber,
taskBinary, part, locs, properties, serializedTaskMetrics, Option(jobId),
Option(sc.applicationId), sc.applicationAttemptId, stage.rdd.isBarrier())
}
case stage: ResultStage =>
partitionsToCompute.map { id =>
val p: Int = stage.partitions(id)
val part = partitions(p)
val locs = taskIdToLocations(id)
new ResultTask(stage.id, stage.latestInfo.attemptNumber,
taskBinary, part, locs, id, properties, serializedTaskMetrics,
Option(jobId), Option(sc.applicationId), sc.applicationAttemptId,
stage.rdd.isBarrier())
}
}
} catch {
case NonFatal(e) =>
abortStage(stage, s"Task creation failed: $e\n${Utils.exceptionString(e)}", Some(e))
runningStages -= stage
return
}
if (tasks.size > 0) {
logInfo(s"Submitting ${tasks.size} missing tasks from $stage (${stage.rdd}) (first 15 " +
s"tasks are for partitions ${tasks.take(15).map(_.partitionId)})")
taskScheduler.submitTasks(new TaskSet(
tasks.toArray, stage.id, stage.latestInfo.attemptNumber, jobId, properties))
} else {
// Because we posted SparkListenerStageSubmitted earlier, we should mark
// the stage as completed here in case there are no tasks to run
markStageAsFinished(stage, None)
stage match {
case stage: ShuffleMapStage =>
logDebug(s"Stage ${stage} is actually done; " +
s"(available: ${stage.isAvailable}," +
s"available outputs: ${stage.numAvailableOutputs}," +
s"partitions: ${stage.numPartitions})")
markMapStageJobsAsFinished(stage)
case stage : ResultStage =>
logDebug(s"Stage ${stage} is actually done; (partitions: ${stage.numPartitions})")
}
submitWaitingChildStages(stage)
}
}
private def submitWaitingChildStages(parent: Stage) {
logTrace(s"Checking if any dependencies of $parent are now runnable")
logTrace("running: " + runningStages)
logTrace("waiting: " + waitingStages)
logTrace("failed: " + failedStages)
val childStages = waitingStages.filter(_.parents.contains(parent)).toArray
waitingStages --= childStages
for (stage <- childStages.sortBy(_.firstJobId)) {
submitStage(stage)
}
}
6.TaskScheduleImpl
这部实际是对taskset 进行封装成TaskSetManager 放入队列
override def submitTasks(taskSet: TaskSet) {
val tasks = taskSet.tasks
logInfo("Adding task set " + taskSet.id + " with " + tasks.length + " tasks")
this.synchronized {
val manager = createTaskSetManager(taskSet, maxTaskFailures)
val stage = taskSet.stageId
val stageTaskSets =
taskSetsByStageIdAndAttempt.getOrElseUpdate(stage, new HashMap[Int, TaskSetManager])
stageTaskSets(taskSet.stageAttemptId) = manager
val conflictingTaskSet = stageTaskSets.exists { case (_, ts) =>
ts.taskSet != taskSet && !ts.isZombie
}
if (conflictingTaskSet) {
throw new IllegalStateException(s"more than one active taskSet for stage $stage:" +
s" ${stageTaskSets.toSeq.map{_._2.taskSet.id}.mkString(",")}")
}
//这一步实际上把taskset放入调度队列中
schedulableBuilder.addTaskSetManager(manager, manager.taskSet.properties)
if (!isLocal && !hasReceivedTask) {
starvationTimer.scheduleAtFixedRate(new TimerTask() {
override def run() {
if (!hasLaunchedTask) {
logWarning("Initial job has not accepted any resources; " +
"check your cluster UI to ensure that workers are registered " +
"and have sufficient resources")
} else {
this.cancel()
}
}
}, STARVATION_TIMEOUT_MS, STARVATION_TIMEOUT_MS)
}
hasReceivedTask = true
}
//通知 StandaloneSchedulerBackend 进行通知,对任务队列中的task 进行分配executor
backend.reviveOffers()
}
7.FIFOSchedulableBuilder
//将TaskSetManager 放入调度队列中
override def addTaskSetManager(manager: Schedulable, properties: Properties) {
rootPool.addSchedulable(manager)
}
8.CoarseGrainedSchedulerBackend
主要是对executor进行过滤,然后executor 和 task 分配
最后启动task,也就是向executor 发送launchtask 的消息
launchTask 其实发送的是TaskDescription,TaskDescription 包含了 task 和 executor 信息
TaskSetManager 生成的 TaskDescription
private def makeOffers() {
// Make sure no executor is killed while some task is launching on it
val taskDescs = CoarseGrainedSchedulerBackend.this.synchronized {
// Filter out executors under killing
val activeExecutors = executorDataMap.filterKeys(executorIsAlive)
val workOffers = activeExecutors.map {
case (id, executorData) =>
new WorkerOffer(id, executorData.executorHost, executorData.freeCores,
Some(executorData.executorAddress.hostPort))
}.toIndexedSeq
scheduler.resourceOffers(workOffers)
}
if (!taskDescs.isEmpty) {
launchTasks(taskDescs)
}
}
def resourceOffers(offers: IndexedSeq[WorkerOffer]): Seq[Seq[TaskDescription]] = synchronized {
// Mark each slave as alive and remember its hostname
// Also track if new executor is added
var newExecAvail = false
for (o <- offers) {
if (!hostToExecutors.contains(o.host)) {
hostToExecutors(o.host) = new HashSet[String]()
}
if (!executorIdToRunningTaskIds.contains(o.executorId)) {
hostToExecutors(o.host) += o.executorId
executorAdded(o.executorId, o.host)
executorIdToHost(o.executorId) = o.host
executorIdToRunningTaskIds(o.executorId) = HashSet[Long]()
newExecAvail = true
}
for (rack <- getRackForHost(o.host)) {
hostsByRack.getOrElseUpdate(rack, new HashSet[String]()) += o.host
}
}
// Before making any offers, remove any nodes from the blacklist whose blacklist has expired. Do
// this here to avoid a separate thread and added synchronization overhead, and also because
// updating the blacklist is only relevant when task offers are being made.
blacklistTrackerOpt.foreach(_.applyBlacklistTimeout())
val filteredOffers = blacklistTrackerOpt.map { blacklistTracker =>
offers.filter { offer =>
!blacklistTracker.isNodeBlacklisted(offer.host) &&
!blacklistTracker.isExecutorBlacklisted(offer.executorId)
}
}.getOrElse(offers)
val shuffledOffers = shuffleOffers(filteredOffers)
// Build a list of tasks to assign to each worker.
val tasks = shuffledOffers.map(o => new ArrayBuffer[TaskDescription](o.cores / CPUS_PER_TASK))
val availableCpus = shuffledOffers.map(o => o.cores).toArray
val availableSlots = shuffledOffers.map(o => o.cores / CPUS_PER_TASK).sum
val sortedTaskSets = rootPool.getSortedTaskSetQueue
for (taskSet <- sortedTaskSets) {
logDebug("parentName: %s, name: %s, runningTasks: %s".format(
taskSet.parent.name, taskSet.name, taskSet.runningTasks))
if (newExecAvail) {
taskSet.executorAdded()
}
}
// Take each TaskSet in our scheduling order, and then offer it each node in increasing order
// of locality levels so that it gets a chance to launch local tasks on all of them.
// NOTE: the preferredLocality order: PROCESS_LOCAL, NODE_LOCAL, NO_PREF, RACK_LOCAL, ANY
for (taskSet <- sortedTaskSets) {
// Skip the barrier taskSet if the available slots are less than the number of pending tasks.
if (taskSet.isBarrier && availableSlots < taskSet.numTasks) {
// Skip the launch process.
// TODO SPARK-24819 If the job requires more slots than available (both busy and free
// slots), fail the job on submit.
logInfo(s"Skip current round of resource offers for barrier stage ${taskSet.stageId} " +
s"because the barrier taskSet requires ${taskSet.numTasks} slots, while the total " +
s"number of available slots is $availableSlots.")
} else {
var launchedAnyTask = false
// Record all the executor IDs assigned barrier tasks on.
val addressesWithDescs = ArrayBuffer[(String, TaskDescription)]()
for (currentMaxLocality <- taskSet.myLocalityLevels) {
var launchedTaskAtCurrentMaxLocality = false
do {
launchedTaskAtCurrentMaxLocality = resourceOfferSingleTaskSet(taskSet,
currentMaxLocality, shuffledOffers, availableCpus, tasks, addressesWithDescs)
launchedAnyTask |= launchedTaskAtCurrentMaxLocality
} while (launchedTaskAtCurrentMaxLocality)
}
if (!launchedAnyTask) {
taskSet.getCompletelyBlacklistedTaskIfAny(hostToExecutors).foreach { taskIndex =>
// If the taskSet is unschedulable we try to find an existing idle blacklisted
// executor. If we cannot find one, we abort immediately. Else we kill the idle
// executor and kick off an abortTimer which if it doesn't schedule a task within the
// the timeout will abort the taskSet if we were unable to schedule any task from the
// taskSet.
// Note 1: We keep track of schedulability on a per taskSet basis rather than on a per
// task basis.
// Note 2: The taskSet can still be aborted when there are more than one idle
// blacklisted executors and dynamic allocation is on. This can happen when a killed
// idle executor isn't replaced in time by ExecutorAllocationManager as it relies on
// pending tasks and doesn't kill executors on idle timeouts, resulting in the abort
// timer to expire and abort the taskSet.
executorIdToRunningTaskIds.find(x => !isExecutorBusy(x._1)) match {
case Some ((executorId, _)) =>
if (!unschedulableTaskSetToExpiryTime.contains(taskSet)) {
blacklistTrackerOpt.foreach(blt => blt.killBlacklistedIdleExecutor(executorId))
val timeout = conf.get(config.UNSCHEDULABLE_TASKSET_TIMEOUT) * 1000
unschedulableTaskSetToExpiryTime(taskSet) = clock.getTimeMillis() + timeout
logInfo(s"Waiting for $timeout ms for completely "
+ s"blacklisted task to be schedulable again before aborting $taskSet.")
abortTimer.schedule(
createUnschedulableTaskSetAbortTimer(taskSet, taskIndex), timeout)
}
case None => // Abort Immediately
logInfo("Cannot schedule any task because of complete blacklisting. No idle" +
s" executors can be found to kill. Aborting $taskSet." )
taskSet.abortSinceCompletelyBlacklisted(taskIndex)
}
}
} else {
// We want to defer killing any taskSets as long as we have a non blacklisted executor
// which can be used to schedule a task from any active taskSets. This ensures that the
// job can make progress.
// Note: It is theoretically possible that a taskSet never gets scheduled on a
// non-blacklisted executor and the abort timer doesn't kick in because of a constant
// submission of new TaskSets. See the PR for more details.
if (unschedulableTaskSetToExpiryTime.nonEmpty) {
logInfo("Clearing the expiry times for all unschedulable taskSets as a task was " +
"recently scheduled.")
unschedulableTaskSetToExpiryTime.clear()
}
}
if (launchedAnyTask && taskSet.isBarrier) {
// Check whether the barrier tasks are partially launched.
// TODO SPARK-24818 handle the assert failure case (that can happen when some locality
// requirements are not fulfilled, and we should revert the launched tasks).
require(addressesWithDescs.size == taskSet.numTasks,
s"Skip current round of resource offers for barrier stage ${taskSet.stageId} " +
s"because only ${addressesWithDescs.size} out of a total number of " +
s"${taskSet.numTasks} tasks got resource offers. The resource offers may have " +
"been blacklisted or cannot fulfill task locality requirements.")
// materialize the barrier coordinator.
maybeInitBarrierCoordinator()
// Update the taskInfos into all the barrier task properties.
val addressesStr = addressesWithDescs
// Addresses ordered by partitionId
.sortBy(_._2.partitionId)
.map(_._1)
.mkString(",")
addressesWithDescs.foreach(_._2.properties.setProperty("addresses", addressesStr))
logInfo(s"Successfully scheduled all the ${addressesWithDescs.size} tasks for barrier " +
s"stage ${taskSet.stageId}.")
}
}
}
// TODO SPARK-24823 Cancel a job that contains barrier stage(s) if the barrier tasks don't get
// launched within a configured time.
if (tasks.size > 0) {
hasLaunchedTask = true
}
return tasks
}
private def launchTasks(tasks: Seq[Seq[TaskDescription]]) {
for (task <- tasks.flatten) {
val serializedTask = TaskDescription.encode(task)
if (serializedTask.limit() >= maxRpcMessageSize) {
Option(scheduler.taskIdToTaskSetManager.get(task.taskId)).foreach { taskSetMgr =>
try {
var msg = "Serialized task %s:%d was %d bytes, which exceeds max allowed: " +
"spark.rpc.message.maxSize (%d bytes). Consider increasing " +
"spark.rpc.message.maxSize or using broadcast variables for large values."
msg = msg.format(task.taskId, task.index, serializedTask.limit(), maxRpcMessageSize)
taskSetMgr.abort(msg)
} catch {
case e: Exception => logError("Exception in error callback", e)
}
}
}
else {
val executorData = executorDataMap(task.executorId)
executorData.freeCores -= scheduler.CPUS_PER_TASK
logDebug(s"Launching task ${task.taskId} on executor id: ${task.executorId} hostname: " +
s"${executorData.executorHost}.")
executorData.executorEndpoint.send(LaunchTask(new SerializableBuffer(serializedTask)))
}
}
}