sigslot学习

sigslot库的介绍就不讲了,网上多的是,主要讲一下在windows上的用法 ,

 

用法:

 

// sigslot_test.cpp : 定义控制台应用程序的入口点。
//

#include "stdafx.h"
#include "sigslot.h"


//发送
class CSendser
{
public:
    sigslot::signal0<> Click0;//没有参数
    sigslot::signal1<int> Click1;//1个参数


};

//接收信号 者
class CReceiver:public sigslot::has_slots<>
{
public:

    void OnClick0()
    {

        printf("OnClick0\n");
    }

    virtual void OnClick1(int a)
    {

        printf("OnClick1(%d)\n",a);
    }
};

class CDeliver:public CReceiver
{
public:

    void OnClick0()
    {

        printf("CDeliver OnClick0\n");
    }

    virtual void OnClick1(int a)
    {

        printf("CDeliver OnClick1(%d)\n",a);
    }
};

int _tmain(int argc, _TCHAR* argv[])
{
    CReceiver recv;
    CDeliver deliver;
    CSendser sender;

    sender.Click0.connect( &recv,&CReceiver::OnClick0 );
    sender.Click1.connect( &recv,&CReceiver::OnClick1 );
    sender.Click1.connect( &deliver,&CDeliver::OnClick1 );

    sender.Click0();
    sender.Click1(2);

    sender.Click0.disconnect_all();//去掉所有的
    sender.Click1.disconnect(&deliver);//只去掉其中一个

    sender.Click0();
    sender.Click1(2);

    return 0;
}

 

这个库,在vs2008上编译的时候,会出现

>d:\documents and settings\administrator\桌面\sigslot_test\sigslot_test\sigslot.h(419) : warning C4346: “std::set<sigslot::_signal_base<mt_policy>*>::const_iterator”: 依赖名称不是类型
1> 用“typename”为前缀来表示类型
1> d:\documents and settings\administrator\桌面\sigslot_test\sigslot_test\sigslot.h(476): 参见对正在编译的类 模板 实例化“sigslot::has_slots<mt_policy>”的引用
1>d:\documents and settings\administrator\桌面\sigslot_test\sigslot_test\sigslot.h(419) : error C2146: 语法错误 : 缺少“;”(在标识符“const_iterator”的前面)
1>d:\documents and settings\administrator\桌面\sigslot_test\sigslot_test\sigslot.h(419) : error C4430: 缺少类型说明符 - 假定为 int。注意: C++ 不支持默认 int

 

出错原因,const_iterator本身就是模板,在实例化前,需要指定其为typename


template<class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
class has_slots : public mt_policy
{
private:
typedef std::set<_signal_base<mt_policy> *> sender_set;
typedef sender_set::const_iterator const_iterator;

 

想修改一下来应用,但是需要修改的地方不止这一个,具体怎么修改,也没有研究出来,

和webrtc中的比较了一下,webrtc中修改的地方比较多

于是,从webrtc中复制出这个文件来,修改了一下头文件,完美编译

sigslot.h代码如下

// sigslot.h: Signal/Slot classes
//
// Written by Sarah Thompson (sarah@telergy.com) 2002.
//
// License: Public domain. You are free to use this code however you like, with the proviso that
//          the author takes on no responsibility or liability for any use.
//
// QUICK DOCUMENTATION
//
//				(see also the full documentation at http://sigslot.sourceforge.net/)
//
//		#define switches
//			SIGSLOT_PURE_ISO			- Define this to force ISO C++ compliance. This also disables
//										  all of the thread safety support on platforms where it is
//										  available.
//
//			SIGSLOT_USE_POSIX_THREADS	- Force use of Posix threads when using a C++ compiler other than
//										  gcc on a platform that supports Posix threads. (When using gcc,
//										  this is the default - use SIGSLOT_PURE_ISO to disable this if
//										  necessary)
//
//			SIGSLOT_DEFAULT_MT_POLICY	- Where thread support is enabled, this defaults to multi_threaded_global.
//										  Otherwise, the default is single_threaded. #define this yourself to
//										  override the default. In pure ISO mode, anything other than
//										  single_threaded will cause a compiler error.
//
//		PLATFORM NOTES
//
//			Win32						- On Win32, the WIN32 symbol must be #defined. Most mainstream
//										  compilers do this by default, but you may need to define it
//										  yourself if your build environment is less standard. This causes
//										  the Win32 thread support to be compiled in and used automatically.
//
//			Unix/Linux/BSD, etc.		- If you're using gcc, it is assumed that you have Posix threads
//										  available, so they are used automatically. You can override this
//										  (as under Windows) with the SIGSLOT_PURE_ISO switch. If you're using
//										  something other than gcc but still want to use Posix threads, you
//										  need to #define SIGSLOT_USE_POSIX_THREADS.
//
//			ISO C++						- If none of the supported platforms are detected, or if
//										  SIGSLOT_PURE_ISO is defined, all multithreading support is turned off,
//										  along with any code that might cause a pure ISO C++ environment to
//										  complain. Before you ask, gcc -ansi -pedantic won't compile this
//										  library, but gcc -ansi is fine. Pedantic mode seems to throw a lot of
//										  errors that aren't really there. If you feel like investigating this,
//										  please contact the author.
//
//
//		THREADING MODES
//
//			single_threaded				- Your program is assumed to be single threaded from the point of view
//										  of signal/slot usage (i.e. all objects using signals and slots are
//										  created and destroyed from a single thread). Behaviour if objects are
//										  destroyed concurrently is undefined (i.e. you'll get the occasional
//										  segmentation fault/memory exception).
//
//			multi_threaded_global		- Your program is assumed to be multi threaded. Objects using signals and
//										  slots can be safely created and destroyed from any thread, even when
//										  connections exist. In multi_threaded_global mode, this is achieved by a
//										  single global mutex (actually a critical section on Windows because they
//										  are faster). This option uses less OS resources, but results in more
//										  opportunities for contention, possibly resulting in more context switches
//										  than are strictly necessary.
//
//			multi_threaded_local		- Behaviour in this mode is essentially the same as multi_threaded_global,
//										  except that each signal, and each object that inherits has_slots, all
//										  have their own mutex/critical section. In practice, this means that
//										  mutex collisions (and hence context switches) only happen if they are
//										  absolutely essential. However, on some platforms, creating a lot of
//										  mutexes can slow down the whole OS, so use this option with care.
//
//		USING THE LIBRARY
//
//			See the full documentation at http://sigslot.sourceforge.net/
//
//
// Libjingle specific:
// This file has been modified such that has_slots and signalx do not have to be
// using the same threading requirements. E.g. it is possible to connect a
// has_slots<single_threaded> and signal0<multi_threaded_local> or
// has_slots<multi_threaded_local> and signal0<single_threaded>.
// If has_slots is single threaded the user must ensure that it is not trying
// to connect or disconnect to signalx concurrently or data race may occur.
// If signalx is single threaded the user must ensure that disconnect, connect
// or signal is not happening concurrently or data race may occur.

#ifndef _SIGSLOT_H__
#define _SIGSLOT_H__

#include <list>
#include <set>
#include <stdlib.h>

// On our copy of sigslot.h, we set single threading as default.
#define SIGSLOT_DEFAULT_MT_POLICY single_threaded

#if defined(SIGSLOT_PURE_ISO) || (!defined(WIN32) && !defined(__GNUG__) && !defined(SIGSLOT_USE_POSIX_THREADS))
#	define _SIGSLOT_SINGLE_THREADED
#elif defined(WIN32)
#	define _SIGSLOT_HAS_WIN32_THREADS
#	if !defined(WIN32_LEAN_AND_MEAN)
#		define WIN32_LEAN_AND_MEAN
#	endif
#	include <windows.h>
#elif defined(__GNUG__) || defined(SIGSLOT_USE_POSIX_THREADS)
#	define _SIGSLOT_HAS_POSIX_THREADS
#	include <pthread.h>
#else
#	define _SIGSLOT_SINGLE_THREADED
#endif

#ifndef SIGSLOT_DEFAULT_MT_POLICY
#	ifdef _SIGSLOT_SINGLE_THREADED
#		define SIGSLOT_DEFAULT_MT_POLICY single_threaded
#	else
#		define SIGSLOT_DEFAULT_MT_POLICY multi_threaded_local
#	endif
#endif

// TODO: change this namespace to talk_base?
namespace sigslot {

	class single_threaded
	{
	public:
		single_threaded()
		{
			;
		}

		virtual ~single_threaded()
		{
			;
		}

		virtual void lock()
		{
			;
		}

		virtual void unlock()
		{
			;
		}
	};

#ifdef _SIGSLOT_HAS_WIN32_THREADS
	// The multi threading policies only get compiled in if they are enabled.
	class multi_threaded_global
	{
	public:
		multi_threaded_global()
		{
			static bool isinitialised = false;

			if(!isinitialised)
			{
				InitializeCriticalSection(get_critsec());
				isinitialised = true;
			}
		}

		multi_threaded_global(const multi_threaded_global&)
		{
			;
		}

		virtual ~multi_threaded_global()
		{
			;
		}

		virtual void lock()
		{
			EnterCriticalSection(get_critsec());
		}

		virtual void unlock()
		{
			LeaveCriticalSection(get_critsec());
		}

	private:
		CRITICAL_SECTION* get_critsec()
		{
			static CRITICAL_SECTION g_critsec;
			return &g_critsec;
		}
	};

	class multi_threaded_local
	{
	public:
		multi_threaded_local()
		{
			InitializeCriticalSection(&m_critsec);
		}

		multi_threaded_local(const multi_threaded_local&)
		{
			InitializeCriticalSection(&m_critsec);
		}

		virtual ~multi_threaded_local()
		{
			DeleteCriticalSection(&m_critsec);
		}

		virtual void lock()
		{
			EnterCriticalSection(&m_critsec);
		}

		virtual void unlock()
		{
			LeaveCriticalSection(&m_critsec);
		}

	private:
		CRITICAL_SECTION m_critsec;
	};
#endif // _SIGSLOT_HAS_WIN32_THREADS

#ifdef _SIGSLOT_HAS_POSIX_THREADS
	// The multi threading policies only get compiled in if they are enabled.
	class multi_threaded_global
	{
	public:
		multi_threaded_global()
		{
			pthread_mutex_init(get_mutex(), NULL);
		}

		multi_threaded_global(const multi_threaded_global&)
		{
			;
		}

		virtual ~multi_threaded_global()
		{
			;
		}

		virtual void lock()
		{
			pthread_mutex_lock(get_mutex());
		}

		virtual void unlock()
		{
			pthread_mutex_unlock(get_mutex());
		}

	private:
		pthread_mutex_t* get_mutex()
		{
			static pthread_mutex_t g_mutex;
			return &g_mutex;
		}
	};

	class multi_threaded_local
	{
	public:
		multi_threaded_local()
		{
			pthread_mutex_init(&m_mutex, NULL);
		}

		multi_threaded_local(const multi_threaded_local&)
		{
			pthread_mutex_init(&m_mutex, NULL);
		}

		virtual ~multi_threaded_local()
		{
			pthread_mutex_destroy(&m_mutex);
		}

		virtual void lock()
		{
			pthread_mutex_lock(&m_mutex);
		}

		virtual void unlock()
		{
			pthread_mutex_unlock(&m_mutex);
		}

	private:
		pthread_mutex_t m_mutex;
	};
#endif // _SIGSLOT_HAS_POSIX_THREADS

	template<class mt_policy>
	class lock_block
	{
	public:
		mt_policy *m_mutex;

		lock_block(mt_policy *mtx)
			: m_mutex(mtx)
		{
			m_mutex->lock();
		}

		~lock_block()
		{
			m_mutex->unlock();
		}
	};

	class has_slots_interface;

	template<class mt_policy>
	class _connection_base0
	{
	public:
		virtual ~_connection_base0() {}
		virtual has_slots_interface* getdest() const = 0;
		virtual void emit() = 0;
		virtual _connection_base0* clone() = 0;
		virtual _connection_base0* duplicate(has_slots_interface* pnewdest) = 0;
	};

	template<class arg1_type, class mt_policy>
	class _connection_base1
	{
	public:
		virtual ~_connection_base1() {}
		virtual has_slots_interface* getdest() const = 0;
		virtual void emit(arg1_type) = 0;
		virtual _connection_base1<arg1_type, mt_policy>* clone() = 0;
		virtual _connection_base1<arg1_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
	};

	template<class arg1_type, class arg2_type, class mt_policy>
	class _connection_base2
	{
	public:
		virtual ~_connection_base2() {}
		virtual has_slots_interface* getdest() const = 0;
		virtual void emit(arg1_type, arg2_type) = 0;
		virtual _connection_base2<arg1_type, arg2_type, mt_policy>* clone() = 0;
		virtual _connection_base2<arg1_type, arg2_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
	};

	template<class arg1_type, class arg2_type, class arg3_type, class mt_policy>
	class _connection_base3
	{
	public:
		virtual ~_connection_base3() {}
		virtual has_slots_interface* getdest() const = 0;
		virtual void emit(arg1_type, arg2_type, arg3_type) = 0;
		virtual _connection_base3<arg1_type, arg2_type, arg3_type, mt_policy>* clone() = 0;
		virtual _connection_base3<arg1_type, arg2_type, arg3_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
	};

	template<class arg1_type, class arg2_type, class arg3_type, class arg4_type, class mt_policy>
	class _connection_base4
	{
	public:
		virtual ~_connection_base4() {}
		virtual has_slots_interface* getdest() const = 0;
		virtual void emit(arg1_type, arg2_type, arg3_type, arg4_type) = 0;
		virtual _connection_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>* clone() = 0;
		virtual _connection_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
	};

	template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
	class arg5_type, class mt_policy>
	class _connection_base5
	{
	public:
		virtual ~_connection_base5() {}
		virtual has_slots_interface* getdest() const = 0;
		virtual void emit(arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type) = 0;
		virtual _connection_base5<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, mt_policy>* clone() = 0;
		virtual _connection_base5<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
	};

	template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
	class arg5_type, class arg6_type, class mt_policy>
	class _connection_base6
	{
	public:
		virtual ~_connection_base6() {}
		virtual has_slots_interface* getdest() const = 0;
		virtual void emit(arg1_type, arg2_type, arg3_type, arg4_type, arg5_type,
			arg6_type) = 0;
		virtual _connection_base6<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, mt_policy>* clone() = 0;
		virtual _connection_base6<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
	};

	template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
	class arg5_type, class arg6_type, class arg7_type, class mt_policy>
	class _connection_base7
	{
	public:
		virtual ~_connection_base7() {}
		virtual has_slots_interface* getdest() const = 0;
		virtual void emit(arg1_type, arg2_type, arg3_type, arg4_type, arg5_type,
			arg6_type, arg7_type) = 0;
		virtual _connection_base7<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type, mt_policy>* clone() = 0;
		virtual _connection_base7<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
	};

	template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
	class arg5_type, class arg6_type, class arg7_type, class arg8_type, class mt_policy>
	class _connection_base8
	{
	public:
		virtual ~_connection_base8() {}
		virtual has_slots_interface* getdest() const = 0;
		virtual void emit(arg1_type, arg2_type, arg3_type, arg4_type, arg5_type,
			arg6_type, arg7_type, arg8_type) = 0;
		virtual _connection_base8<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>* clone() = 0;
		virtual _connection_base8<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>* duplicate(has_slots_interface* pnewdest) = 0;
	};

	class _signal_base_interface
	{
	public:
		virtual void slot_disconnect(has_slots_interface* pslot) = 0;
		virtual void slot_duplicate(const has_slots_interface* poldslot, has_slots_interface* pnewslot) = 0;
	};

	template<class mt_policy>
	class _signal_base : public _signal_base_interface, public mt_policy
	{
	};

	class has_slots_interface
	{
	public:
		has_slots_interface()
		{
			;
		}

		virtual void signal_connect(_signal_base_interface* sender) = 0;

		virtual void signal_disconnect(_signal_base_interface* sender) = 0;

		virtual ~has_slots_interface()
		{
		}

		virtual void disconnect_all() = 0;
	};

	template<class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
	class has_slots : public has_slots_interface, public mt_policy
	{
	private:
		typedef std::set<_signal_base_interface*> sender_set;
		typedef sender_set::const_iterator const_iterator;

	public:
		has_slots()
		{
			;
		}

		has_slots(const has_slots& hs)
		{
			lock_block<mt_policy> lock(this);
			const_iterator it = hs.m_senders.begin();
			const_iterator itEnd = hs.m_senders.end();

			while(it != itEnd)
			{
				(*it)->slot_duplicate(&hs, this);
				m_senders.insert(*it);
				++it;
			}
		}

		void signal_connect(_signal_base_interface* sender)
		{
			lock_block<mt_policy> lock(this);
			m_senders.insert(sender);
		}

		void signal_disconnect(_signal_base_interface* sender)
		{
			lock_block<mt_policy> lock(this);
			m_senders.erase(sender);
		}

		virtual ~has_slots()
		{
			disconnect_all();
		}

		void disconnect_all()
		{
			lock_block<mt_policy> lock(this);
			const_iterator it = m_senders.begin();
			const_iterator itEnd = m_senders.end();

			while(it != itEnd)
			{
				(*it)->slot_disconnect(this);
				++it;
			}

			m_senders.erase(m_senders.begin(), m_senders.end());
		}

	private:
		sender_set m_senders;
	};

	template<class mt_policy>
	class _signal_base0 : public _signal_base<mt_policy>
	{
	public:
		typedef std::list<_connection_base0<mt_policy> *>  connections_list;

		_signal_base0()
		{
			;
		}

		_signal_base0(const _signal_base0& s)
			: _signal_base<mt_policy>(s)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = s.m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = s.m_connected_slots.end();

			while(it != itEnd)
			{
				(*it)->getdest()->signal_connect(this);
				m_connected_slots.push_back((*it)->clone());

				++it;
			}
		}

		~_signal_base0()
		{
			disconnect_all();
		}

		bool is_empty()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();
			return it == itEnd;
		}

		void disconnect_all()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				(*it)->getdest()->signal_disconnect(this);
				delete *it;

				++it;
			}

			m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
		}

#ifdef _DEBUG
		bool connected(has_slots_interface* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();
			while(it != itEnd)
			{
				itNext = it;
				++itNext;
				if ((*it)->getdest() == pclass)
					return true;
				it = itNext;
			}
			return false;
		}
#endif

		void disconnect(has_slots_interface* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				if((*it)->getdest() == pclass)
				{
					delete *it;
					m_connected_slots.erase(it);
					pclass->signal_disconnect(this);
					return;
				}

				++it;
			}
		}

		void slot_disconnect(has_slots_interface* pslot)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				typename connections_list::iterator itNext = it;
				++itNext;

				if((*it)->getdest() == pslot)
				{
					delete *it;
					m_connected_slots.erase(it);
				}

				it = itNext;
			}
		}

		void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				if((*it)->getdest() == oldtarget)
				{
					m_connected_slots.push_back((*it)->duplicate(newtarget));
				}

				++it;
			}
		}

	protected:
		connections_list m_connected_slots;
	};

	template<class arg1_type, class mt_policy>
	class _signal_base1 : public _signal_base<mt_policy>
	{
	public:
		typedef std::list<_connection_base1<arg1_type, mt_policy> *>  connections_list;

		_signal_base1()
		{
			;
		}

		_signal_base1(const _signal_base1<arg1_type, mt_policy>& s)
			: _signal_base<mt_policy>(s)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = s.m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = s.m_connected_slots.end();

			while(it != itEnd)
			{
				(*it)->getdest()->signal_connect(this);
				m_connected_slots.push_back((*it)->clone());

				++it;
			}
		}

		void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				if((*it)->getdest() == oldtarget)
				{
					m_connected_slots.push_back((*it)->duplicate(newtarget));
				}

				++it;
			}
		}

		~_signal_base1()
		{
			disconnect_all();
		}

		bool is_empty()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();
			return it == itEnd;
		}

		void disconnect_all()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				(*it)->getdest()->signal_disconnect(this);
				delete *it;

				++it;
			}

			m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
		}

#ifdef _DEBUG
		bool connected(has_slots_interface* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();
			while(it != itEnd)
			{
				itNext = it;
				++itNext;
				if ((*it)->getdest() == pclass)
					return true;
				it = itNext;
			}
			return false;
		}
#endif

		void disconnect(has_slots_interface* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				if((*it)->getdest() == pclass)
				{
					delete *it;
					m_connected_slots.erase(it);
					pclass->signal_disconnect(this);
					return;
				}

				++it;
			}
		}

		void slot_disconnect(has_slots_interface* pslot)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				typename connections_list::iterator itNext = it;
				++itNext;

				if((*it)->getdest() == pslot)
				{
					delete *it;
					m_connected_slots.erase(it);
				}

				it = itNext;
			}
		}


	protected:
		connections_list m_connected_slots;
	};

	template<class arg1_type, class arg2_type, class mt_policy>
	class _signal_base2 : public _signal_base<mt_policy>
	{
	public:
		typedef std::list<_connection_base2<arg1_type, arg2_type, mt_policy> *>
			connections_list;

		_signal_base2()
		{
			;
		}

		_signal_base2(const _signal_base2<arg1_type, arg2_type, mt_policy>& s)
			: _signal_base<mt_policy>(s)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = s.m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = s.m_connected_slots.end();

			while(it != itEnd)
			{
				(*it)->getdest()->signal_connect(this);
				m_connected_slots.push_back((*it)->clone());

				++it;
			}
		}

		void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				if((*it)->getdest() == oldtarget)
				{
					m_connected_slots.push_back((*it)->duplicate(newtarget));
				}

				++it;
			}
		}

		~_signal_base2()
		{
			disconnect_all();
		}

		bool is_empty()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();
			return it == itEnd;
		}

		void disconnect_all()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				(*it)->getdest()->signal_disconnect(this);
				delete *it;

				++it;
			}

			m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
		}

#ifdef _DEBUG
		bool connected(has_slots_interface* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();
			while(it != itEnd)
			{
				itNext = it;
				++itNext;
				if ((*it)->getdest() == pclass)
					return true;
				it = itNext;
			}
			return false;
		}
#endif

		void disconnect(has_slots_interface* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				if((*it)->getdest() == pclass)
				{
					delete *it;
					m_connected_slots.erase(it);
					pclass->signal_disconnect(this);
					return;
				}

				++it;
			}
		}

		void slot_disconnect(has_slots_interface* pslot)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				typename connections_list::iterator itNext = it;
				++itNext;

				if((*it)->getdest() == pslot)
				{
					delete *it;
					m_connected_slots.erase(it);
				}

				it = itNext;
			}
		}

	protected:
		connections_list m_connected_slots;
	};

	template<class arg1_type, class arg2_type, class arg3_type, class mt_policy>
	class _signal_base3 : public _signal_base<mt_policy>
	{
	public:
		typedef std::list<_connection_base3<arg1_type, arg2_type, arg3_type, mt_policy> *>
			connections_list;

		_signal_base3()
		{
			;
		}

		_signal_base3(const _signal_base3<arg1_type, arg2_type, arg3_type, mt_policy>& s)
			: _signal_base<mt_policy>(s)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = s.m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = s.m_connected_slots.end();

			while(it != itEnd)
			{
				(*it)->getdest()->signal_connect(this);
				m_connected_slots.push_back((*it)->clone());

				++it;
			}
		}

		void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				if((*it)->getdest() == oldtarget)
				{
					m_connected_slots.push_back((*it)->duplicate(newtarget));
				}

				++it;
			}
		}

		~_signal_base3()
		{
			disconnect_all();
		}

		bool is_empty()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();
			return it == itEnd;
		}

		void disconnect_all()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				(*it)->getdest()->signal_disconnect(this);
				delete *it;

				++it;
			}

			m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
		}

#ifdef _DEBUG
		bool connected(has_slots_interface* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();
			while(it != itEnd)
			{
				itNext = it;
				++itNext;
				if ((*it)->getdest() == pclass)
					return true;
				it = itNext;
			}
			return false;
		}
#endif

		void disconnect(has_slots_interface* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				if((*it)->getdest() == pclass)
				{
					delete *it;
					m_connected_slots.erase(it);
					pclass->signal_disconnect(this);
					return;
				}

				++it;
			}
		}

		void slot_disconnect(has_slots_interface* pslot)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				typename connections_list::iterator itNext = it;
				++itNext;

				if((*it)->getdest() == pslot)
				{
					delete *it;
					m_connected_slots.erase(it);
				}

				it = itNext;
			}
		}

	protected:
		connections_list m_connected_slots;
	};

	template<class arg1_type, class arg2_type, class arg3_type, class arg4_type, class mt_policy>
	class _signal_base4 : public _signal_base<mt_policy>
	{
	public:
		typedef std::list<_connection_base4<arg1_type, arg2_type, arg3_type,
			arg4_type, mt_policy> *>  connections_list;

		_signal_base4()
		{
			;
		}

		_signal_base4(const _signal_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>& s)
			: _signal_base<mt_policy>(s)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = s.m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = s.m_connected_slots.end();

			while(it != itEnd)
			{
				(*it)->getdest()->signal_connect(this);
				m_connected_slots.push_back((*it)->clone());

				++it;
			}
		}

		void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				if((*it)->getdest() == oldtarget)
				{
					m_connected_slots.push_back((*it)->duplicate(newtarget));
				}

				++it;
			}
		}

		~_signal_base4()
		{
			disconnect_all();
		}

		bool is_empty()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();
			return it == itEnd;
		}

		void disconnect_all()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				(*it)->getdest()->signal_disconnect(this);
				delete *it;

				++it;
			}

			m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
		}

#ifdef _DEBUG
		bool connected(has_slots_interface* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();
			while(it != itEnd)
			{
				itNext = it;
				++itNext;
				if ((*it)->getdest() == pclass)
					return true;
				it = itNext;
			}
			return false;
		}
#endif

		void disconnect(has_slots_interface* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				if((*it)->getdest() == pclass)
				{
					delete *it;
					m_connected_slots.erase(it);
					pclass->signal_disconnect(this);
					return;
				}

				++it;
			}
		}

		void slot_disconnect(has_slots_interface* pslot)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				typename connections_list::iterator itNext = it;
				++itNext;

				if((*it)->getdest() == pslot)
				{
					delete *it;
					m_connected_slots.erase(it);
				}

				it = itNext;
			}
		}

	protected:
		connections_list m_connected_slots;
	};

	template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
	class arg5_type, class mt_policy>
	class _signal_base5 : public _signal_base<mt_policy>
	{
	public:
		typedef std::list<_connection_base5<arg1_type, arg2_type, arg3_type,
			arg4_type, arg5_type, mt_policy> *>  connections_list;

		_signal_base5()
		{
			;
		}

		_signal_base5(const _signal_base5<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, mt_policy>& s)
			: _signal_base<mt_policy>(s)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = s.m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = s.m_connected_slots.end();

			while(it != itEnd)
			{
				(*it)->getdest()->signal_connect(this);
				m_connected_slots.push_back((*it)->clone());

				++it;
			}
		}

		void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				if((*it)->getdest() == oldtarget)
				{
					m_connected_slots.push_back((*it)->duplicate(newtarget));
				}

				++it;
			}
		}

		~_signal_base5()
		{
			disconnect_all();
		}

		bool is_empty()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();
			return it == itEnd;
		}

		void disconnect_all()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				(*it)->getdest()->signal_disconnect(this);
				delete *it;

				++it;
			}

			m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
		}

#ifdef _DEBUG
		bool connected(has_slots_interface* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();
			while(it != itEnd)
			{
				itNext = it;
				++itNext;
				if ((*it)->getdest() == pclass)
					return true;
				it = itNext;
			}
			return false;
		}
#endif

		void disconnect(has_slots_interface* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				if((*it)->getdest() == pclass)
				{
					delete *it;
					m_connected_slots.erase(it);
					pclass->signal_disconnect(this);
					return;
				}

				++it;
			}
		}

		void slot_disconnect(has_slots_interface* pslot)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				typename connections_list::iterator itNext = it;
				++itNext;

				if((*it)->getdest() == pslot)
				{
					delete *it;
					m_connected_slots.erase(it);
				}

				it = itNext;
			}
		}

	protected:
		connections_list m_connected_slots;
	};

	template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
	class arg5_type, class arg6_type, class mt_policy>
	class _signal_base6 : public _signal_base<mt_policy>
	{
	public:
		typedef std::list<_connection_base6<arg1_type, arg2_type, arg3_type,
			arg4_type, arg5_type, arg6_type, mt_policy> *>  connections_list;

		_signal_base6()
		{
			;
		}

		_signal_base6(const _signal_base6<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, mt_policy>& s)
			: _signal_base<mt_policy>(s)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = s.m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = s.m_connected_slots.end();

			while(it != itEnd)
			{
				(*it)->getdest()->signal_connect(this);
				m_connected_slots.push_back((*it)->clone());

				++it;
			}
		}

		void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				if((*it)->getdest() == oldtarget)
				{
					m_connected_slots.push_back((*it)->duplicate(newtarget));
				}

				++it;
			}
		}

		~_signal_base6()
		{
			disconnect_all();
		}

		bool is_empty()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();
			return it == itEnd;
		}

		void disconnect_all()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				(*it)->getdest()->signal_disconnect(this);
				delete *it;

				++it;
			}

			m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
		}

#ifdef _DEBUG
		bool connected(has_slots_interface* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();
			while(it != itEnd)
			{
				itNext = it;
				++itNext;
				if ((*it)->getdest() == pclass)
					return true;
				it = itNext;
			}
			return false;
		}
#endif

		void disconnect(has_slots_interface* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				if((*it)->getdest() == pclass)
				{
					delete *it;
					m_connected_slots.erase(it);
					pclass->signal_disconnect(this);
					return;
				}

				++it;
			}
		}

		void slot_disconnect(has_slots_interface* pslot)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				typename connections_list::iterator itNext = it;
				++itNext;

				if((*it)->getdest() == pslot)
				{
					delete *it;
					m_connected_slots.erase(it);
				}

				it = itNext;
			}
		}

	protected:
		connections_list m_connected_slots;
	};

	template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
	class arg5_type, class arg6_type, class arg7_type, class mt_policy>
	class _signal_base7 : public _signal_base<mt_policy>
	{
	public:
		typedef std::list<_connection_base7<arg1_type, arg2_type, arg3_type,
			arg4_type, arg5_type, arg6_type, arg7_type, mt_policy> *>  connections_list;

		_signal_base7()
		{
			;
		}

		_signal_base7(const _signal_base7<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type, mt_policy>& s)
			: _signal_base<mt_policy>(s)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = s.m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = s.m_connected_slots.end();

			while(it != itEnd)
			{
				(*it)->getdest()->signal_connect(this);
				m_connected_slots.push_back((*it)->clone());

				++it;
			}
		}

		void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				if((*it)->getdest() == oldtarget)
				{
					m_connected_slots.push_back((*it)->duplicate(newtarget));
				}

				++it;
			}
		}

		~_signal_base7()
		{
			disconnect_all();
		}

		bool is_empty()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();
			return it == itEnd;
		}

		void disconnect_all()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				(*it)->getdest()->signal_disconnect(this);
				delete *it;

				++it;
			}

			m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
		}

#ifdef _DEBUG
		bool connected(has_slots_interface* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();
			while(it != itEnd)
			{
				itNext = it;
				++itNext;
				if ((*it)->getdest() == pclass)
					return true;
				it = itNext;
			}
			return false;
		}
#endif

		void disconnect(has_slots_interface* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				if((*it)->getdest() == pclass)
				{
					delete *it;
					m_connected_slots.erase(it);
					pclass->signal_disconnect(this);
					return;
				}

				++it;
			}
		}

		void slot_disconnect(has_slots_interface* pslot)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				typename connections_list::iterator itNext = it;
				++itNext;

				if((*it)->getdest() == pslot)
				{
					delete *it;
					m_connected_slots.erase(it);
				}

				it = itNext;
			}
		}

	protected:
		connections_list m_connected_slots;
	};

	template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
	class arg5_type, class arg6_type, class arg7_type, class arg8_type, class mt_policy>
	class _signal_base8 : public _signal_base<mt_policy>
	{
	public:
		typedef std::list<_connection_base8<arg1_type, arg2_type, arg3_type,
			arg4_type, arg5_type, arg6_type, arg7_type, arg8_type, mt_policy> *>
			connections_list;

		_signal_base8()
		{
			;
		}

		_signal_base8(const _signal_base8<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>& s)
			: _signal_base<mt_policy>(s)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = s.m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = s.m_connected_slots.end();

			while(it != itEnd)
			{
				(*it)->getdest()->signal_connect(this);
				m_connected_slots.push_back((*it)->clone());

				++it;
			}
		}

		void slot_duplicate(const has_slots_interface* oldtarget, has_slots_interface* newtarget)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				if((*it)->getdest() == oldtarget)
				{
					m_connected_slots.push_back((*it)->duplicate(newtarget));
				}

				++it;
			}
		}

		~_signal_base8()
		{
			disconnect_all();
		}

		bool is_empty()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();
			return it == itEnd;
		}

		void disconnect_all()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				(*it)->getdest()->signal_disconnect(this);
				delete *it;

				++it;
			}

			m_connected_slots.erase(m_connected_slots.begin(), m_connected_slots.end());
		}

#ifdef _DEBUG
		bool connected(has_slots_interface* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();
			while(it != itEnd)
			{
				itNext = it;
				++itNext;
				if ((*it)->getdest() == pclass)
					return true;
				it = itNext;
			}
			return false;
		}
#endif

		void disconnect(has_slots_interface* pclass)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				if((*it)->getdest() == pclass)
				{
					delete *it;
					m_connected_slots.erase(it);
					pclass->signal_disconnect(this);
					return;
				}

				++it;
			}
		}

		void slot_disconnect(has_slots_interface* pslot)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::iterator it = m_connected_slots.begin();
			typename connections_list::iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				typename connections_list::iterator itNext = it;
				++itNext;

				if((*it)->getdest() == pslot)
				{
					delete *it;
					m_connected_slots.erase(it);
				}

				it = itNext;
			}
		}

	protected:
		connections_list m_connected_slots;
	};


	template<class dest_type, class mt_policy>
	class _connection0 : public _connection_base0<mt_policy>
	{
	public:
		_connection0()
		{
			m_pobject = NULL;
			m_pmemfun = NULL;
		}

		_connection0(dest_type* pobject, void (dest_type::*pmemfun)())
		{
			m_pobject = pobject;
			m_pmemfun = pmemfun;
		}

		virtual ~_connection0()
		{
		}

		virtual _connection_base0<mt_policy>* clone()
		{
			return new _connection0<dest_type, mt_policy>(*this);
		}

		virtual _connection_base0<mt_policy>* duplicate(has_slots_interface* pnewdest)
		{
			return new _connection0<dest_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
		}

		virtual void emit()
		{
			(m_pobject->*m_pmemfun)();
		}

		virtual has_slots_interface* getdest() const
		{
			return m_pobject;
		}

	private:
		dest_type* m_pobject;
		void (dest_type::* m_pmemfun)();
	};

	template<class dest_type, class arg1_type, class mt_policy>
	class _connection1 : public _connection_base1<arg1_type, mt_policy>
	{
	public:
		_connection1()
		{
			m_pobject = NULL;
			m_pmemfun = NULL;
		}

		_connection1(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type))
		{
			m_pobject = pobject;
			m_pmemfun = pmemfun;
		}

		virtual ~_connection1()
		{
		}

		virtual _connection_base1<arg1_type, mt_policy>* clone()
		{
			return new _connection1<dest_type, arg1_type, mt_policy>(*this);
		}

		virtual _connection_base1<arg1_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
		{
			return new _connection1<dest_type, arg1_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
		}

		virtual void emit(arg1_type a1)
		{
			(m_pobject->*m_pmemfun)(a1);
		}

		virtual has_slots_interface* getdest() const
		{
			return m_pobject;
		}

	private:
		dest_type* m_pobject;
		void (dest_type::* m_pmemfun)(arg1_type);
	};

	template<class dest_type, class arg1_type, class arg2_type, class mt_policy>
	class _connection2 : public _connection_base2<arg1_type, arg2_type, mt_policy>
	{
	public:
		_connection2()
		{
			m_pobject = NULL;
			m_pmemfun = NULL;
		}

		_connection2(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
			arg2_type))
		{
			m_pobject = pobject;
			m_pmemfun = pmemfun;
		}

		virtual ~_connection2()
		{
		}

		virtual _connection_base2<arg1_type, arg2_type, mt_policy>* clone()
		{
			return new _connection2<dest_type, arg1_type, arg2_type, mt_policy>(*this);
		}

		virtual _connection_base2<arg1_type, arg2_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
		{
			return new _connection2<dest_type, arg1_type, arg2_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
		}

		virtual void emit(arg1_type a1, arg2_type a2)
		{
			(m_pobject->*m_pmemfun)(a1, a2);
		}

		virtual has_slots_interface* getdest() const
		{
			return m_pobject;
		}

	private:
		dest_type* m_pobject;
		void (dest_type::* m_pmemfun)(arg1_type, arg2_type);
	};

	template<class dest_type, class arg1_type, class arg2_type, class arg3_type, class mt_policy>
	class _connection3 : public _connection_base3<arg1_type, arg2_type, arg3_type, mt_policy>
	{
	public:
		_connection3()
		{
			m_pobject = NULL;
			m_pmemfun = NULL;
		}

		_connection3(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
			arg2_type, arg3_type))
		{
			m_pobject = pobject;
			m_pmemfun = pmemfun;
		}

		virtual ~_connection3()
		{
		}

		virtual _connection_base3<arg1_type, arg2_type, arg3_type, mt_policy>* clone()
		{
			return new _connection3<dest_type, arg1_type, arg2_type, arg3_type, mt_policy>(*this);
		}

		virtual _connection_base3<arg1_type, arg2_type, arg3_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
		{
			return new _connection3<dest_type, arg1_type, arg2_type, arg3_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
		}

		virtual void emit(arg1_type a1, arg2_type a2, arg3_type a3)
		{
			(m_pobject->*m_pmemfun)(a1, a2, a3);
		}

		virtual has_slots_interface* getdest() const
		{
			return m_pobject;
		}

	private:
		dest_type* m_pobject;
		void (dest_type::* m_pmemfun)(arg1_type, arg2_type, arg3_type);
	};

	template<class dest_type, class arg1_type, class arg2_type, class arg3_type,
	class arg4_type, class mt_policy>
	class _connection4 : public _connection_base4<arg1_type, arg2_type,
		arg3_type, arg4_type, mt_policy>
	{
	public:
		_connection4()
		{
			m_pobject = NULL;
			m_pmemfun = NULL;
		}

		_connection4(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
			arg2_type, arg3_type, arg4_type))
		{
			m_pobject = pobject;
			m_pmemfun = pmemfun;
		}

		virtual ~_connection4()
		{
		}

		virtual _connection_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>* clone()
		{
			return new _connection4<dest_type, arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>(*this);
		}

		virtual _connection_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
		{
			return new _connection4<dest_type, arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
		}

		virtual void emit(arg1_type a1, arg2_type a2, arg3_type a3,
			arg4_type a4)
		{
			(m_pobject->*m_pmemfun)(a1, a2, a3, a4);
		}

		virtual has_slots_interface* getdest() const
		{
			return m_pobject;
		}

	private:
		dest_type* m_pobject;
		void (dest_type::* m_pmemfun)(arg1_type, arg2_type, arg3_type,
			arg4_type);
	};

	template<class dest_type, class arg1_type, class arg2_type, class arg3_type,
	class arg4_type, class arg5_type, class mt_policy>
	class _connection5 : public _connection_base5<arg1_type, arg2_type,
		arg3_type, arg4_type, arg5_type, mt_policy>
	{
	public:
		_connection5()
		{
			m_pobject = NULL;
			m_pmemfun = NULL;
		}

		_connection5(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
			arg2_type, arg3_type, arg4_type, arg5_type))
		{
			m_pobject = pobject;
			m_pmemfun = pmemfun;
		}

		virtual ~_connection5()
		{
		}

		virtual _connection_base5<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, mt_policy>* clone()
		{
			return new _connection5<dest_type, arg1_type, arg2_type, arg3_type, arg4_type,
				arg5_type, mt_policy>(*this);
		}

		virtual _connection_base5<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
		{
			return new _connection5<dest_type, arg1_type, arg2_type, arg3_type, arg4_type,
				arg5_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
		}

		virtual void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
			arg5_type a5)
		{
			(m_pobject->*m_pmemfun)(a1, a2, a3, a4, a5);
		}

		virtual has_slots_interface* getdest() const
		{
			return m_pobject;
		}

	private:
		dest_type* m_pobject;
		void (dest_type::* m_pmemfun)(arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type);
	};

	template<class dest_type, class arg1_type, class arg2_type, class arg3_type,
	class arg4_type, class arg5_type, class arg6_type, class mt_policy>
	class _connection6 : public _connection_base6<arg1_type, arg2_type,
		arg3_type, arg4_type, arg5_type, arg6_type, mt_policy>
	{
	public:
		_connection6()
		{
			m_pobject = NULL;
			m_pmemfun = NULL;
		}

		_connection6(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
			arg2_type, arg3_type, arg4_type, arg5_type, arg6_type))
		{
			m_pobject = pobject;
			m_pmemfun = pmemfun;
		}

		virtual ~_connection6()
		{
		}

		virtual _connection_base6<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, mt_policy>* clone()
		{
			return new _connection6<dest_type, arg1_type, arg2_type, arg3_type, arg4_type,
				arg5_type, arg6_type, mt_policy>(*this);
		}

		virtual _connection_base6<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
		{
			return new _connection6<dest_type, arg1_type, arg2_type, arg3_type, arg4_type,
				arg5_type, arg6_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
		}

		virtual void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
			arg5_type a5, arg6_type a6)
		{
			(m_pobject->*m_pmemfun)(a1, a2, a3, a4, a5, a6);
		}

		virtual has_slots_interface* getdest() const
		{
			return m_pobject;
		}

	private:
		dest_type* m_pobject;
		void (dest_type::* m_pmemfun)(arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type);
	};

	template<class dest_type, class arg1_type, class arg2_type, class arg3_type,
	class arg4_type, class arg5_type, class arg6_type, class arg7_type, class mt_policy>
	class _connection7 : public _connection_base7<arg1_type, arg2_type,
		arg3_type, arg4_type, arg5_type, arg6_type, arg7_type, mt_policy>
	{
	public:
		_connection7()
		{
			m_pobject = NULL;
			m_pmemfun = NULL;
		}

		_connection7(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
			arg2_type, arg3_type, arg4_type, arg5_type, arg6_type, arg7_type))
		{
			m_pobject = pobject;
			m_pmemfun = pmemfun;
		}

		virtual ~_connection7()
		{
		}

		virtual _connection_base7<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type, mt_policy>* clone()
		{
			return new _connection7<dest_type, arg1_type, arg2_type, arg3_type, arg4_type,
				arg5_type, arg6_type, arg7_type, mt_policy>(*this);
		}

		virtual _connection_base7<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
		{
			return new _connection7<dest_type, arg1_type, arg2_type, arg3_type, arg4_type,
				arg5_type, arg6_type, arg7_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
		}

		virtual void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
			arg5_type a5, arg6_type a6, arg7_type a7)
		{
			(m_pobject->*m_pmemfun)(a1, a2, a3, a4, a5, a6, a7);
		}

		virtual has_slots_interface* getdest() const
		{
			return m_pobject;
		}

	private:
		dest_type* m_pobject;
		void (dest_type::* m_pmemfun)(arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type);
	};

	template<class dest_type, class arg1_type, class arg2_type, class arg3_type,
	class arg4_type, class arg5_type, class arg6_type, class arg7_type,
	class arg8_type, class mt_policy>
	class _connection8 : public _connection_base8<arg1_type, arg2_type,
		arg3_type, arg4_type, arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>
	{
	public:
		_connection8()
		{
			m_pobject = NULL;
			m_pmemfun = NULL;
		}

		_connection8(dest_type* pobject, void (dest_type::*pmemfun)(arg1_type,
			arg2_type, arg3_type, arg4_type, arg5_type, arg6_type,
			arg7_type, arg8_type))
		{
			m_pobject = pobject;
			m_pmemfun = pmemfun;
		}

		virtual ~_connection8()
		{
		}

		virtual _connection_base8<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>* clone()
		{
			return new _connection8<dest_type, arg1_type, arg2_type, arg3_type, arg4_type,
				arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>(*this);
		}

		virtual _connection_base8<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>* duplicate(has_slots_interface* pnewdest)
		{
			return new _connection8<dest_type, arg1_type, arg2_type, arg3_type, arg4_type,
				arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>((dest_type *)pnewdest, m_pmemfun);
		}

		virtual void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
			arg5_type a5, arg6_type a6, arg7_type a7, arg8_type a8)
		{
			(m_pobject->*m_pmemfun)(a1, a2, a3, a4, a5, a6, a7, a8);
		}

		virtual has_slots_interface* getdest() const
		{
			return m_pobject;
		}

	private:
		dest_type* m_pobject;
		void (dest_type::* m_pmemfun)(arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type, arg8_type);
	};

	template<class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
	class signal0 : public _signal_base0<mt_policy>
	{
	public:
		typedef _signal_base0<mt_policy> base;
		typedef typename base::connections_list connections_list;
		using base::m_connected_slots;

		signal0()
		{
			;
		}

		signal0(const signal0<mt_policy>& s)
			: _signal_base0<mt_policy>(s)
		{
			;
		}

		template<class desttype>
		void connect(desttype* pclass, void (desttype::*pmemfun)())
		{
			lock_block<mt_policy> lock(this);
			_connection0<desttype, mt_policy>* conn =
				new _connection0<desttype, mt_policy>(pclass, pmemfun);
			m_connected_slots.push_back(conn);
			pclass->signal_connect(this);
		}

		void emit()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				itNext = it;
				++itNext;

				(*it)->emit();

				it = itNext;
			}
		}

		void operator()()
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				itNext = it;
				++itNext;

				(*it)->emit();

				it = itNext;
			}
		}
	};

	template<class arg1_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
	class signal1 : public _signal_base1<arg1_type, mt_policy>
	{
	public:
		typedef _signal_base1<arg1_type, mt_policy> base;
		typedef typename base::connections_list connections_list;
		using base::m_connected_slots;

		signal1()
		{
			;
		}

		signal1(const signal1<arg1_type, mt_policy>& s)
			: _signal_base1<arg1_type, mt_policy>(s)
		{
			;
		}

		template<class desttype>
		void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type))
		{
			lock_block<mt_policy> lock(this);
			_connection1<desttype, arg1_type, mt_policy>* conn =
				new _connection1<desttype, arg1_type, mt_policy>(pclass, pmemfun);
			m_connected_slots.push_back(conn);
			pclass->signal_connect(this);
		}

		void emit(arg1_type a1)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				itNext = it;
				++itNext;

				(*it)->emit(a1);

				it = itNext;
			}
		}

		void operator()(arg1_type a1)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				itNext = it;
				++itNext;

				(*it)->emit(a1);

				it = itNext;
			}
		}
	};

	template<class arg1_type, class arg2_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
	class signal2 : public _signal_base2<arg1_type, arg2_type, mt_policy>
	{
	public:
		typedef _signal_base2<arg1_type, arg2_type, mt_policy> base;
		typedef typename base::connections_list connections_list;
		using base::m_connected_slots;

		signal2()
		{
			;
		}

		signal2(const signal2<arg1_type, arg2_type, mt_policy>& s)
			: _signal_base2<arg1_type, arg2_type, mt_policy>(s)
		{
			;
		}

		template<class desttype>
		void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type,
			arg2_type))
		{
			lock_block<mt_policy> lock(this);
			_connection2<desttype, arg1_type, arg2_type, mt_policy>* conn = new
				_connection2<desttype, arg1_type, arg2_type, mt_policy>(pclass, pmemfun);
			m_connected_slots.push_back(conn);
			pclass->signal_connect(this);
		}

		void emit(arg1_type a1, arg2_type a2)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				itNext = it;
				++itNext;

				(*it)->emit(a1, a2);

				it = itNext;
			}
		}

		void operator()(arg1_type a1, arg2_type a2)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				itNext = it;
				++itNext;

				(*it)->emit(a1, a2);

				it = itNext;
			}
		}
	};

	template<class arg1_type, class arg2_type, class arg3_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
	class signal3 : public _signal_base3<arg1_type, arg2_type, arg3_type, mt_policy>
	{
	public:
		typedef _signal_base3<arg1_type, arg2_type, arg3_type, mt_policy> base;
		typedef typename base::connections_list connections_list;
		using base::m_connected_slots;

		signal3()
		{
			;
		}

		signal3(const signal3<arg1_type, arg2_type, arg3_type, mt_policy>& s)
			: _signal_base3<arg1_type, arg2_type, arg3_type, mt_policy>(s)
		{
			;
		}

		template<class desttype>
		void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type,
			arg2_type, arg3_type))
		{
			lock_block<mt_policy> lock(this);
			_connection3<desttype, arg1_type, arg2_type, arg3_type, mt_policy>* conn =
				new _connection3<desttype, arg1_type, arg2_type, arg3_type, mt_policy>(pclass,
				pmemfun);
			m_connected_slots.push_back(conn);
			pclass->signal_connect(this);
		}

		void emit(arg1_type a1, arg2_type a2, arg3_type a3)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				itNext = it;
				++itNext;

				(*it)->emit(a1, a2, a3);

				it = itNext;
			}
		}

		void operator()(arg1_type a1, arg2_type a2, arg3_type a3)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				itNext = it;
				++itNext;

				(*it)->emit(a1, a2, a3);

				it = itNext;
			}
		}
	};

	template<class arg1_type, class arg2_type, class arg3_type, class arg4_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
	class signal4 : public _signal_base4<arg1_type, arg2_type, arg3_type,
		arg4_type, mt_policy>
	{
	public:
		typedef _signal_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy> base;
		typedef typename base::connections_list connections_list;
		using base::m_connected_slots;

		signal4()
		{
			;
		}

		signal4(const signal4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>& s)
			: _signal_base4<arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>(s)
		{
			;
		}

		template<class desttype>
		void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type,
			arg2_type, arg3_type, arg4_type))
		{
			lock_block<mt_policy> lock(this);
			_connection4<desttype, arg1_type, arg2_type, arg3_type, arg4_type, mt_policy>*
				conn = new _connection4<desttype, arg1_type, arg2_type, arg3_type,
				arg4_type, mt_policy>(pclass, pmemfun);
			m_connected_slots.push_back(conn);
			pclass->signal_connect(this);
		}

		void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				itNext = it;
				++itNext;

				(*it)->emit(a1, a2, a3, a4);

				it = itNext;
			}
		}

		void operator()(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				itNext = it;
				++itNext;

				(*it)->emit(a1, a2, a3, a4);

				it = itNext;
			}
		}
	};

	template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
	class arg5_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
	class signal5 : public _signal_base5<arg1_type, arg2_type, arg3_type,
		arg4_type, arg5_type, mt_policy>
	{
	public:
		typedef _signal_base5<arg1_type, arg2_type, arg3_type, arg4_type, arg5_type, mt_policy> base;
		typedef typename base::connections_list connections_list;
		using base::m_connected_slots;

		signal5()
		{
			;
		}

		signal5(const signal5<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, mt_policy>& s)
			: _signal_base5<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, mt_policy>(s)
		{
			;
		}

		template<class desttype>
		void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type,
			arg2_type, arg3_type, arg4_type, arg5_type))
		{
			lock_block<mt_policy> lock(this);
			_connection5<desttype, arg1_type, arg2_type, arg3_type, arg4_type,
				arg5_type, mt_policy>* conn = new _connection5<desttype, arg1_type, arg2_type,
				arg3_type, arg4_type, arg5_type, mt_policy>(pclass, pmemfun);
			m_connected_slots.push_back(conn);
			pclass->signal_connect(this);
		}

		void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
			arg5_type a5)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				itNext = it;
				++itNext;

				(*it)->emit(a1, a2, a3, a4, a5);

				it = itNext;
			}
		}

		void operator()(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
			arg5_type a5)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				itNext = it;
				++itNext;

				(*it)->emit(a1, a2, a3, a4, a5);

				it = itNext;
			}
		}
	};


	template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
	class arg5_type, class arg6_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
	class signal6 : public _signal_base6<arg1_type, arg2_type, arg3_type,
		arg4_type, arg5_type, arg6_type, mt_policy>
	{
	public:
		typedef _signal_base6<arg1_type, arg2_type, arg3_type, arg4_type, arg5_type, arg6_type, mt_policy> base;
		typedef typename base::connections_list connections_list;
		using base::m_connected_slots;

		signal6()
		{
			;
		}

		signal6(const signal6<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, mt_policy>& s)
			: _signal_base6<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, mt_policy>(s)
		{
			;
		}

		template<class desttype>
		void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type,
			arg2_type, arg3_type, arg4_type, arg5_type, arg6_type))
		{
			lock_block<mt_policy> lock(this);
			_connection6<desttype, arg1_type, arg2_type, arg3_type, arg4_type,
				arg5_type, arg6_type, mt_policy>* conn =
				new _connection6<desttype, arg1_type, arg2_type, arg3_type,
				arg4_type, arg5_type, arg6_type, mt_policy>(pclass, pmemfun);
			m_connected_slots.push_back(conn);
			pclass->signal_connect(this);
		}

		void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
			arg5_type a5, arg6_type a6)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				itNext = it;
				++itNext;

				(*it)->emit(a1, a2, a3, a4, a5, a6);

				it = itNext;
			}
		}

		void operator()(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
			arg5_type a5, arg6_type a6)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				itNext = it;
				++itNext;

				(*it)->emit(a1, a2, a3, a4, a5, a6);

				it = itNext;
			}
		}
	};

	template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
	class arg5_type, class arg6_type, class arg7_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
	class signal7 : public _signal_base7<arg1_type, arg2_type, arg3_type,
		arg4_type, arg5_type, arg6_type, arg7_type, mt_policy>
	{
	public:
		typedef _signal_base7<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type, mt_policy> base;
		typedef typename base::connections_list connections_list;
		using base::m_connected_slots;

		signal7()
		{
			;
		}

		signal7(const signal7<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type, mt_policy>& s)
			: _signal_base7<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type, mt_policy>(s)
		{
			;
		}

		template<class desttype>
		void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type,
			arg2_type, arg3_type, arg4_type, arg5_type, arg6_type,
			arg7_type))
		{
			lock_block<mt_policy> lock(this);
			_connection7<desttype, arg1_type, arg2_type, arg3_type, arg4_type,
				arg5_type, arg6_type, arg7_type, mt_policy>* conn =
				new _connection7<desttype, arg1_type, arg2_type, arg3_type,
				arg4_type, arg5_type, arg6_type, arg7_type, mt_policy>(pclass, pmemfun);
			m_connected_slots.push_back(conn);
			pclass->signal_connect(this);
		}

		void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
			arg5_type a5, arg6_type a6, arg7_type a7)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				itNext = it;
				++itNext;

				(*it)->emit(a1, a2, a3, a4, a5, a6, a7);

				it = itNext;
			}
		}

		void operator()(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
			arg5_type a5, arg6_type a6, arg7_type a7)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				itNext = it;
				++itNext;

				(*it)->emit(a1, a2, a3, a4, a5, a6, a7);

				it = itNext;
			}
		}
	};

	template<class arg1_type, class arg2_type, class arg3_type, class arg4_type,
	class arg5_type, class arg6_type, class arg7_type, class arg8_type, class mt_policy = SIGSLOT_DEFAULT_MT_POLICY>
	class signal8 : public _signal_base8<arg1_type, arg2_type, arg3_type,
		arg4_type, arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>
	{
	public:
		typedef _signal_base8<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type, arg8_type, mt_policy> base;
		typedef typename base::connections_list connections_list;
		using base::m_connected_slots;

		signal8()
		{
			;
		}

		signal8(const signal8<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>& s)
			: _signal_base8<arg1_type, arg2_type, arg3_type, arg4_type,
			arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>(s)
		{
			;
		}

		template<class desttype>
		void connect(desttype* pclass, void (desttype::*pmemfun)(arg1_type,
			arg2_type, arg3_type, arg4_type, arg5_type, arg6_type,
			arg7_type, arg8_type))
		{
			lock_block<mt_policy> lock(this);
			_connection8<desttype, arg1_type, arg2_type, arg3_type, arg4_type,
				arg5_type, arg6_type, arg7_type, arg8_type, mt_policy>* conn =
				new _connection8<desttype, arg1_type, arg2_type, arg3_type,
				arg4_type, arg5_type, arg6_type, arg7_type,
				arg8_type, mt_policy>(pclass, pmemfun);
			m_connected_slots.push_back(conn);
			pclass->signal_connect(this);
		}

		void emit(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
			arg5_type a5, arg6_type a6, arg7_type a7, arg8_type a8)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				itNext = it;
				++itNext;

				(*it)->emit(a1, a2, a3, a4, a5, a6, a7, a8);

				it = itNext;
			}
		}

		void operator()(arg1_type a1, arg2_type a2, arg3_type a3, arg4_type a4,
			arg5_type a5, arg6_type a6, arg7_type a7, arg8_type a8)
		{
			lock_block<mt_policy> lock(this);
			typename connections_list::const_iterator itNext, it = m_connected_slots.begin();
			typename connections_list::const_iterator itEnd = m_connected_slots.end();

			while(it != itEnd)
			{
				itNext = it;
				++itNext;

				(*it)->emit(a1, a2, a3, a4, a5, a6, a7, a8);

				it = itNext;
			}
		}
	};

}; // namespace sigslot

#endif // _SIGSLOT_H__

  

 

posted @ 2013-11-18 18:19  choday  阅读(1422)  评论(0编辑  收藏  举报