为 PyTorch 层指定自定义名称
参考这个问答,有两种方法。
第一种,在定义 nn.Sequential
时传入 OrderedDict 类型变量。
import collections
import torch
model = torch.nn.Sequential(
collections.OrderedDict(
[
("conv1", torch.nn.Conv2d(1, 20, 5)),
("relu1", torch.nn.ReLU()),
("conv2", torch.nn.Conv2d(20, 64, 5)),
("relu2", torch.nn.ReLU()),
]
)
)
for name, param in model.named_parameters():
print(name)
第二种,使用 nn.ModuleDict
定义层。
class MyModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.whatever = torch.nn.ModuleDict(
{f"my_name{i}": torch.nn.Conv2d(10, 10, 3) for i in range(5)}
)
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 终于写完轮子一部分:tcp代理 了,记录一下
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 别再用vector<bool>了!Google高级工程师:这可能是STL最大的设计失误
· 单元测试从入门到精通
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理