回溯法(3)
四、0-1背包问题
问题表述:给定n种物品和一背包。物品i的重量是wi,其价值为pi,背包的容量为C。问应如何选择装入背包的物品,使得装入背包中物品的总价值最大?
0-1背包问题是一个特殊的整数规划问题。
解空间:
可行性约束函数:
上界函数:
考虑一个右子树的时候,设
r:是当前未考虑的剩余物品的总价值(remainder)
cp:是当前的价值(current price)
bestp:是当前得到的最优价值(best price)
那么,满足:
但是,上界r太松。
一个更加紧的上界:
将剩余物品按照单位重量价值排序,然后依次装入物品,直到装不下,再将剩余物品的一部分放入背包。(r_n <= r)
实现
/* 主题:0-1背包问题 * 作者:chinazhangjie * 邮箱:chinajiezhang@gmail.com * 开发语言:C++ * 开发环境:Mircosoft Virsual Studio 2008 * 时间: 2010.10.25 */ #include <iostream> #include <vector> #include <algorithm> #include <functional> using namespace std; class goods { public: int weight; // 重量 int price; // 价格 goods() : weight(0),price(0) {} }; bool goods_greater(const goods& lhs,const goods& rhs) { return (lhs.price / lhs.weight) > (rhs.price / rhs.weight); } class knapsack { public: knapsack (int c,const vector<goods>& gl) : capacity (c), curr_price(0), best_price (0), curr_weight(0){ goods_list = gl; total_layers = gl.size(); curr_path.resize (total_layers); best_path.resize (total_layers); } void backtrack () { __backtrack (0); cout << "path: " ; copy (best_path.begin(),best_path.end(),ostream_iterator<int> (cout, " ")); cout << endl; cout << "best_price: " << best_price << endl; } private: // 计算上界 int __bound (int layers) { int cleft = capacity - curr_weight; int result = curr_price; // 将layer之后的物品进行按单位价格降序排序 vector<goods> tmp = goods_list; sort (tmp.begin() + layers, tmp.end(),goods_greater); // 以物品单位重量价值递减序装入物品 while (layers < total_layers && tmp[layers].weight <= cleft) { cleft -= tmp[layers].weight; result += tmp[layers].price; ++ layers; } // 装满背包 if (layers < total_layers) { result += (tmp[layers].price / tmp[layers].weight) * cleft; } return result; } void __backtrack (int layers) { // 到达叶子结点,更新最优价值 if (layers >= total_layers) { if (curr_price > best_price || best_price == 0) { best_price = curr_price; copy (curr_path.begin(), curr_path.end(), best_path.begin()); } return ; } // 左剪枝(能放的下) if (curr_weight + goods_list[layers].weight <= capacity) { curr_path[layers] = 1; curr_weight += goods_list[layers].weight; curr_price += goods_list[layers].price; __backtrack (layers + 1); curr_weight -= goods_list[layers].weight; curr_price -= goods_list[layers].price; } // 右剪枝 if (__bound (layers + 1) > best_price || best_price == 0 ) { curr_path[layers] = 0; __backtrack (layers + 1); } /*curr_path[layers] = 0; __backtrack (layers + 1);*/ } private: vector<goods> goods_list; // 货物信息列表 int capacity; // 背包承载量 int curr_price; // 当前价格 int curr_weight; // 当前重量 int best_price; // 当前得到的最优价值 int total_layers; // 总层数 vector<int> curr_path; // 当前路径 vector<int> best_path; // 最优价值下的路径 }; int main() { const int size = 3; vector<goods> gl(size); gl[0].weight = 10; gl[0].price = 1; gl[1].weight = 8; gl[1].price = 4; gl[2].weight = 5; gl[2].price = 5; knapsack ks(16, gl); ks.backtrack (); return 0; }
五、旅行售货员问题
问题表述:在图中找到一个权最小的周游路线
解空间:排列树
剪枝策略:
当前路径的权重+下一个路径的权重 < 当前的最小权重,则搜索该路径
实现:
/* 主题:旅行售货员问题 * 作者:chinazhangjie * 邮箱:chinajiezhang@gmail.com * 开发语言:C++ * 开发环境:Mircosoft Virsual Studio 2008 * 时间: 2010.10.26 */ #include <iostream> #include <vector> #include <iterator> #include <algorithm> using namespace std; class traveling { public: static const int NOEDGE = -1 ; public: traveling (const vector<vector<int> >& ug) : curr_cost (0), best_cost (-1) { node_count = ug.size (); undigraph = ug; curr_solution.resize (node_count); for (int i = 0; i < node_count; ++ i) { curr_solution[i] = i; } best_solution.resize (node_count); } void backtrack () { __backtrack (1); cout << best_cost << endl; } private: void __backtrack (int layers) { if (layers >= node_count) { if (undigraph[curr_solution[node_count - 1]][curr_solution[0]] == NOEDGE){ return ; } int total_cost = curr_cost + undigraph[curr_solution[node_count - 1]][curr_solution[0]] ; if (total_cost < best_cost || best_cost == -1) { // 更新最优费用和最优路径 best_cost = total_cost; copy (curr_solution.begin(), curr_solution.end(), best_solution.begin()); } return ; } for (int i = layers; i < node_count; ++ i) { // 剪枝 if (undigraph[curr_solution[layers - 1]][curr_solution[i]] != NOEDGE && ( curr_cost + undigraph[curr_solution[layers - 1]][curr_solution[i]] < best_cost || best_cost == -1 )) { // 搜索子树 swap (curr_solution[layers],curr_solution[i]); curr_cost += undigraph[curr_solution[layers - 1]][curr_solution[layers]]; __backtrack (layers + 1); curr_cost -= undigraph[curr_solution[layers - 1]][curr_solution[layers]]; swap (curr_solution[layers],curr_solution[i]); } } } int node_count; // 结点个数 int curr_cost; // 当前费用 int best_cost; // 当前 vector<int> curr_solution; // 当前解决方案 vector<int> best_solution; // 最优解决方案 vector<vector<int> > undigraph; // 无向图(采用矩阵存储) }; int main() { int size = 4; vector<vector<int> > ug(size); for (int i = 0;i < size; ++ i) { ug[i].resize (size); } ug[0][0] = -1; ug[0][1] = 30; ug[0][2] = 6; ug[0][3] = 4; ug[1][0] = 30; ug[1][1] = -1; ug[1][2] = 5; ug[1][3] = 10; ug[2][0] = 6; ug[2][1] = 5; ug[2][2] = -1; ug[2][3] = 20; ug[3][0] = 4; ug[3][1] = 10; ug[3][2] = 20; ug[3][3] = -1; traveling t(ug); t.backtrack(); return 0; }
参考书籍 《算法设计与分析(第二版)》 王晓东 编著
授课教师 张阳教授