国密(国产密码)SM2、SM3、SM4 C#实现 new
这两天与联通对接流量卡实名相关接口。他们用到了国密SM3,一个比较冷门的加密(或者说是签名)方式。顺带我也了解了下SM2、SM3、SM4:本文只做了SM2、SM3、SM4 代码补充
国产密码算法(国密算法)是指国家密码局认定的国产商用密码算法,在金融领域目前主要使用公开的SM2、SM3、SM4三类算法,分别是非对称算法、哈希算法和对称算法。
SM1对称密码
SM1 算法是分组密码算法,分组长度为128位,密钥长度都为 128 比特,算法安全保密强度及相关软硬件实现性能与 AES 相当,算法不公开,仅以IP核的形式存在于芯片中。
采用该算法已经研制了系列芯片、智能IC卡、智能密码钥匙、加密卡、加密机等安全产品,广泛应用于电子政务、电子商务及国民经济的各个应用领域(包括国家政务通、警务通等重要领域)。
SM2椭圆曲线公钥密码算法
SM2算法就是ECC椭圆曲线密码机制,但在签名、密钥交换方面不同于ECDSA、ECDH等国际标准,而是采取了更为安全的机制。另外,SM2推荐了一条256位的曲线作为标准曲线。
SM2标准包括总则,数字签名算法,密钥交换协议,公钥加密算法四个部分,并在每个部分的附录详细说明了实现的相关细节及示例。
SM2算法主要考虑素域Fp和F2m上的椭圆曲线,分别介绍了这两类域的表示,运算,以及域上的椭圆曲线的点的表示,运算和多倍点计算算法。然后介绍了编程语言中的数据转换,包括整数和字节串,字节串和比特串,域元素和比特串,域元素和整数,点和字节串之间的数据转换规则。详细说明了有限域上椭圆曲线的参数生成以及验证,椭圆曲线的参数包括有限域的选取、椭圆曲线方程参数、椭圆曲线群基点的选取等,并给出了选取的标准以便于验证。最后给椭圆曲线上密钥对的生成以及公钥的验证,用户的密钥对为(s,sP),其中s为用户的私钥,sP为用户的公钥,由于离散对数问题从sP难以得到s,并针对素域和二元扩域给出了密钥对生成细节和验证方式。总则中的知识也适用于SM9算法。
在总则的基础上给出了数字签名算法(包括数字签名生成算法和验证算法),密钥交换协议以及公钥加密算法(包括加密算法和解密算法),并在每个部分给出了算法描述,算法流程和相关示例。
数字签名算法、密钥交换协议以及公钥加密算法都使用了国家密管理局批准的SM3密码杂凑算法和随机数发生器。数字签名算法、密钥交换协议以及公钥加密算法根据总则来选取有限域和椭圆曲线,并生成密钥对。
SM2算法在很多方面都优于RSA算法。
SM3杂凑算法
SM3密码杂凑(哈希、散列)算法给出了杂凑函数算法的计算方法和计算步骤,并给出了运算示例。此算法适用于商用密码应用中的数字签名和验证,消息认证码的生成与验证以及随机数的生成,可满足多种密码应用的安全需求。在SM2,SM9标准中使用。
此算法对输入长度小于2的64次方的比特消息,经过填充和迭代压缩,生成长度为256比特的杂凑值,其中使用了异或,模,模加,移位,与,或,非运算,由填充,迭代过程,消息扩展和压缩函数所构成。具体算法及运算示例见SM3标准。
SM4对称算法
此算法是一个分组算法,用于无线局域网产品。该算法的分组长度为128比特,密钥长度为128比特。加密算法与密钥扩展算法都采用32轮非线性迭代结构。解密算法与加密算法的结构相同,只是轮密钥的使用顺序相反,解密轮密钥是加密轮密钥的逆序。
此算法采用非线性迭代结构,每次迭代由一个轮函数给出,其中轮函数由一个非线性变换和线性变换复合而成,非线性变换由S盒所给出。其中rki为轮密钥,合成置换T组成轮函数。轮密钥的产生与上图流程类似,由加密密钥作为输入生成,轮函数中的线性变换不同,还有些参数的区别。SM4算法的具体描述和示例见SM4标准。
SM7对称密码
SM7算法,是一种分组密码算法,分组长度为128比特,密钥长度为128比特。SM7适用于非接触式IC卡,应用包括身份识别类应用(门禁卡、工作证、参赛证),票务类应用(大型赛事门票、展会门票),支付与通卡类应用(积分消费卡、校园一卡通、企业一卡通等)。
SM9标识密码算法
为了降低公开密钥系统中密钥和证书管理的复杂性,以色列科学家、RSA算法发明人之一Adi Shamir在1984年提出了标识密码(Identity-Based Cryptography)的理念。标识密码将用户的标识(如邮件地址、手机号码、QQ号码等)作为公钥,省略了交换数字证书和公钥过程,使得安全系统变得易于部署和管理,非常适合端对端离线安全通讯、云端数据加密、基于属性加密、基于策略加密的各种场合。2008年标识密码算法正式获得国家密码管理局颁发的商密算法型号:SM9(商密九号算法),为我国标识密码技术的应用奠定了坚实的基础。
SM9算法不需要申请数字证书,适用于互联网应用的各种新兴应用的安全保障。如基于云技术的密码服务、电子邮件安全、智能终端保护、物联网安全、云存储安全等等。这些安全应用可采用手机号码或邮件地址作为公钥,实现数据加密、身份认证、通话加密、通道加密等安全应用,并具有使用方便,易于部署的特点,从而开启了普及密码算法的大门。
ZUC祖冲之算法
祖冲之序列密码算法是中国自主研究的流密码算法,是运用于移动通信4G网络中的国际标准密码算法,该算法包括祖冲之算法(ZUC)、加密算法(128-EEA3)和完整性算法(128-EIA3)三个部分。目前已有对ZUC算法的优化实现,有专门针对128-EEA3和128-EIA3的硬件实现与优化。
【主流算法分类】
是否可逆 | 算法类型 | 算法 | 备注 |
可逆 | 对称加密 | DES | 密钥长度64,分组长度64 |
AES | 密钥长度:128,192,256,分组长度128 | ||
SM4 | 密钥长度:128,分组长度128 | ||
非对称加密 | RSA | 基于特殊的可逆模幂运算 | |
ECC | 相比RSA:基于椭圆曲线,速度快,安全性高,发布时间较晚 | ||
SM2 | 基于ECC,国产 | ||
不可逆 | 摘要 | HAS-256 | |
Md5 | 摘要长度32 | ||
SM3 | SM3算法采用Merkle-Damgard结构,消息分组长度为512位 ,摘要值长度为256位(62个字母数字组成的字符) |
入正题
首先需要引用 BouncyCastle.Crypto.dll(.netcore 或者 stander 需要引入BouncyCastle.Crypto 的 NuGet包)
一、SM2
SM2主类
using System; using Org.BouncyCastle.Crypto.Generators; using Org.BouncyCastle.Math.EC; using Org.BouncyCastle.Math; using Org.BouncyCastle.Crypto; using Org.BouncyCastle.Crypto.Parameters; using Org.BouncyCastle.Security; using System.Text; namespace Com.Mlq.SM { public class SM2 { public static SM2 Instance { get { return new SM2(); } } public static SM2 InstanceTest { get { return new SM2(); } } public static readonly string[] sm2_param = { "FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF",// p,0 "FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFC",// a,1 "28E9FA9E9D9F5E344D5A9E4BCF6509A7F39789F515AB8F92DDBCBD414D940E93",// b,2 "FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFF7203DF6B21C6052B53BBF40939D54123",// n,3 "32C4AE2C1F1981195F9904466A39C9948FE30BBFF2660BE1715A4589334C74C7",// gx,4 "BC3736A2F4F6779C59BDCEE36B692153D0A9877CC62A474002DF32E52139F0A0" // gy,5 }; public string[] ecc_param = sm2_param; public readonly BigInteger ecc_p; public readonly BigInteger ecc_a; public readonly BigInteger ecc_b; public readonly BigInteger ecc_n; public readonly BigInteger ecc_gx; public readonly BigInteger ecc_gy; public readonly ECCurve ecc_curve; public readonly ECPoint ecc_point_g; public readonly ECDomainParameters ecc_bc_spec; public readonly ECKeyPairGenerator ecc_key_pair_generator; private SM2() { ecc_param = sm2_param; ECFieldElement ecc_gx_fieldelement; ECFieldElement ecc_gy_fieldelement; ecc_p = new BigInteger(ecc_param[0], 16); ecc_a = new BigInteger(ecc_param[1], 16); ecc_b = new BigInteger(ecc_param[2], 16); ecc_n = new BigInteger(ecc_param[3], 16); ecc_gx = new BigInteger(ecc_param[4], 16); ecc_gy = new BigInteger(ecc_param[5], 16); ecc_gx_fieldelement = new FpFieldElement(ecc_p, ecc_gx); ecc_gy_fieldelement = new FpFieldElement(ecc_p, ecc_gy); ecc_curve = new FpCurve(ecc_p, ecc_a, ecc_b); ecc_point_g = new FpPoint(ecc_curve, ecc_gx_fieldelement, ecc_gy_fieldelement); ecc_bc_spec = new ECDomainParameters(ecc_curve, ecc_point_g, ecc_n); ECKeyGenerationParameters ecc_ecgenparam; ecc_ecgenparam = new ECKeyGenerationParameters(ecc_bc_spec, new SecureRandom()); ecc_key_pair_generator = new ECKeyPairGenerator(); ecc_key_pair_generator.Init(ecc_ecgenparam); } public virtual byte[] Sm2GetZ(byte[] userId, ECPoint userKey) { SM3Digest sm3 = new SM3Digest(); byte[] p; // userId length int len = userId.Length * 8; sm3.Update((byte) (len >> 8 & 0x00ff)); sm3.Update((byte) (len & 0x00ff)); // userId sm3.BlockUpdate(userId, 0, userId.Length); // a,b p = ecc_a.ToByteArray(); sm3.BlockUpdate(p, 0, p.Length); p = ecc_b.ToByteArray(); sm3.BlockUpdate(p, 0, p.Length); // gx,gy p = ecc_gx.ToByteArray(); sm3.BlockUpdate(p, 0, p.Length); p = ecc_gy.ToByteArray(); sm3.BlockUpdate(p, 0, p.Length); // x,y p = userKey.X.ToBigInteger().ToByteArray(); sm3.BlockUpdate(p, 0, p.Length); p = userKey.Y.ToBigInteger().ToByteArray(); sm3.BlockUpdate(p, 0, p.Length); // Z byte[] md = new byte[sm3.GetDigestSize()]; sm3.DoFinal(md, 0); return md; } } }
SM2工具类:
using Com.Mlq.SM; using Org.BouncyCastle.Crypto; using Org.BouncyCastle.Crypto.Parameters; using Org.BouncyCastle.Math; using Org.BouncyCastle.Math.EC; using Org.BouncyCastle.Utilities.Encoders; using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace Com.Mlq.SM { class SM2Utils { public static void GenerateKeyPair() { SM2 sm2 = SM2.Instance; AsymmetricCipherKeyPair key = sm2.ecc_key_pair_generator.GenerateKeyPair(); ECPrivateKeyParameters ecpriv = (ECPrivateKeyParameters) key.Private; ECPublicKeyParameters ecpub = (ECPublicKeyParameters) key.Public; BigInteger privateKey = ecpriv.D; ECPoint publicKey = ecpub.Q; System.Console.Out.WriteLine("公钥: " + Encoding.Default.GetString(Hex.Encode(publicKey.GetEncoded())).ToUpper()); System.Console.Out.WriteLine("私钥: " + Encoding.Default.GetString(Hex.Encode(privateKey.ToByteArray())).ToUpper()); } public static String Encrypt(byte[] publicKey,byte[] data) { if (null == publicKey || publicKey.Length == 0) { return null; } if (data == null || data.Length == 0) { return null; } byte[] source = new byte[data.Length]; Array.Copy(data, 0, source, 0, data.Length); Cipher cipher = new Cipher(); SM2 sm2 = SM2.Instance; ECPoint userKey = sm2.ecc_curve.DecodePoint(publicKey); ECPoint c1 = cipher.Init_enc(sm2, userKey); cipher.Encrypt(source); byte[] c3 = new byte[32]; cipher.Dofinal(c3); String sc1 = Encoding.Default.GetString(Hex.Encode(c1.GetEncoded())); String sc2 = Encoding.Default.GetString(Hex.Encode(source)); String sc3 = Encoding.Default.GetString(Hex.Encode(c3)); return (sc1 + sc2 + sc3).ToUpper(); } public static byte[] Decrypt(byte[] privateKey, byte[] encryptedData) { if (null == privateKey || privateKey.Length == 0) { return null; } if (encryptedData == null || encryptedData.Length == 0) { return null; } String data = Encoding.Default.GetString(Hex.Encode(encryptedData)); byte[] c1Bytes = Hex.Decode(Encoding.Default.GetBytes(data.Substring(0 , 130))); int c2Len = encryptedData.Length - 97; byte[] c2 = Hex.Decode(Encoding.Default.GetBytes(data.Substring(130 , 2 * c2Len))); byte[] c3 = Hex.Decode(Encoding.Default.GetBytes(data.Substring(130 + 2 * c2Len , 64))); SM2 sm2 = SM2.Instance; BigInteger userD = new BigInteger(1, privateKey); ECPoint c1 = sm2.ecc_curve.DecodePoint(c1Bytes); Cipher cipher = new Cipher(); cipher.Init_dec(userD, c1); cipher.Decrypt(c2); cipher.Dofinal(c3); return c2; } //[STAThread] //public static void Main() //{ // GenerateKeyPair(); // String plainText = "ererfeiisgod"; // byte[] sourceData = Encoding.Default.GetBytes(plainText); // //下面的秘钥可以使用generateKeyPair()生成的秘钥内容 // // 国密规范正式私钥 // String prik = "3690655E33D5EA3D9A4AE1A1ADD766FDEA045CDEAA43A9206FB8C430CEFE0D94"; // // 国密规范正式公钥 // String pubk = "04F6E0C3345AE42B51E06BF50B98834988D54EBC7460FE135A48171BC0629EAE205EEDE253A530608178A98F1E19BB737302813BA39ED3FA3C51639D7A20C7391A"; // System.Console.Out.WriteLine("加密: "); // String cipherText = SM2Utils.Encrypt(Hex.Decode(pubk), sourceData); // System.Console.Out.WriteLine(cipherText); // System.Console.Out.WriteLine("解密: "); // plainText = Encoding.Default.GetString(SM2Utils.Decrypt(Hex.Decode(prik), Hex.Decode(cipherText))); // System.Console.Out.WriteLine(plainText); // Console.ReadLine(); //} } }
二、SM3
using System; using Org.BouncyCastle.Utilities.Encoders; using System.Text; using Org.BouncyCastle.Crypto; namespace Com.Mlq.SM { public abstract class GeneralDigest : IDigest { private const int BYTE_LENGTH = 64; private byte[] xBuf; private int xBufOff; private long byteCount; internal GeneralDigest() { xBuf = new byte[4]; } internal GeneralDigest(GeneralDigest t) { xBuf = new byte[t.xBuf.Length]; Array.Copy(t.xBuf, 0, xBuf, 0, t.xBuf.Length); xBufOff = t.xBufOff; byteCount = t.byteCount; } public void Update(byte input) { xBuf[xBufOff++] = input; if (xBufOff == xBuf.Length) { ProcessWord(xBuf, 0); xBufOff = 0; } byteCount++; } public void BlockUpdate( byte[] input, int inOff, int length) { // // fill the current word // while ((xBufOff != 0) && (length > 0)) { Update(input[inOff]); inOff++; length--; } // // process whole words. // while (length > xBuf.Length) { ProcessWord(input, inOff); inOff += xBuf.Length; length -= xBuf.Length; byteCount += xBuf.Length; } // // load in the remainder. // while (length > 0) { Update(input[inOff]); inOff++; length--; } } public void Finish() { long bitLength = (byteCount << 3); // // add the pad bytes. // Update(unchecked((byte)128)); while (xBufOff != 0) Update(unchecked((byte)0)); ProcessLength(bitLength); ProcessBlock(); } public virtual void Reset() { byteCount = 0; xBufOff = 0; Array.Clear(xBuf, 0, xBuf.Length); } public int GetByteLength() { return BYTE_LENGTH; } internal abstract void ProcessWord(byte[] input, int inOff); internal abstract void ProcessLength(long bitLength); internal abstract void ProcessBlock(); public abstract string AlgorithmName { get; } public abstract int GetDigestSize(); public abstract int DoFinal(byte[] output, int outOff); } public class SupportClass { /// <summary> /// Performs an unsigned bitwise right shift with the specified number /// </summary> /// <param name="number">Number to operate on</param> /// <param name="bits">Ammount of bits to shift</param> /// <returns>The resulting number from the shift operation</returns> public static int URShift(int number, int bits) { if (number >= 0) return number >> bits; else return (number >> bits) + (2 << ~bits); } /// <summary> /// Performs an unsigned bitwise right shift with the specified number /// </summary> /// <param name="number">Number to operate on</param> /// <param name="bits">Ammount of bits to shift</param> /// <returns>The resulting number from the shift operation</returns> public static int URShift(int number, long bits) { return URShift(number, (int)bits); } /// <summary> /// Performs an unsigned bitwise right shift with the specified number /// </summary> /// <param name="number">Number to operate on</param> /// <param name="bits">Ammount of bits to shift</param> /// <returns>The resulting number from the shift operation</returns> public static long URShift(long number, int bits) { if (number >= 0) return number >> bits; else return (number >> bits) + (2L << ~bits); } /// <summary> /// Performs an unsigned bitwise right shift with the specified number /// </summary> /// <param name="number">Number to operate on</param> /// <param name="bits">Ammount of bits to shift</param> /// <returns>The resulting number from the shift operation</returns> public static long URShift(long number, long bits) { return URShift(number, (int)bits); } } public class SM3Digest : GeneralDigest { public override string AlgorithmName { get { return "SM3"; } } public override int GetDigestSize() { return DIGEST_LENGTH; } private const int DIGEST_LENGTH = 32; private static readonly int[] v0 = new int[]{0x7380166f, 0x4914b2b9, 0x172442d7, unchecked((int) 0xda8a0600), unchecked((int) 0xa96f30bc), 0x163138aa, unchecked((int) 0xe38dee4d), unchecked((int) 0xb0fb0e4e)}; private int[] v = new int[8]; private int[] v_ = new int[8]; private static readonly int[] X0 = new int[]{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; private int[] X = new int[68]; private int xOff; private int T_00_15 = 0x79cc4519; private int T_16_63 = 0x7a879d8a; public SM3Digest() { Reset(); } public SM3Digest(SM3Digest t):base(t) { Array.Copy(t.X, 0, X, 0, t.X.Length); xOff = t.xOff; Array.Copy(t.v, 0, v, 0, t.v.Length); } public override void Reset() { base.Reset(); Array.Copy(v0, 0, v, 0, v0.Length); xOff = 0; Array.Copy(X0, 0, X, 0, X0.Length); } internal override void ProcessBlock() { int i; int[] ww = X; int[] ww_ = new int[64]; for (i = 16; i < 68; i++) { ww[i] = P1(ww[i - 16] ^ ww[i - 9] ^ (ROTATE(ww[i - 3], 15))) ^ (ROTATE(ww[i - 13], 7)) ^ ww[i - 6]; } for (i = 0; i < 64; i++) { ww_[i] = ww[i] ^ ww[i + 4]; } int[] vv = v; int[] vv_ = v_; Array.Copy(vv, 0, vv_, 0, v0.Length); int SS1, SS2, TT1, TT2, aaa; for (i = 0; i < 16; i++) { aaa = ROTATE(vv_[0], 12); SS1 = aaa + vv_[4] + ROTATE(T_00_15, i); SS1 = ROTATE(SS1, 7); SS2 = SS1 ^ aaa; TT1 = FF_00_15(vv_[0], vv_[1], vv_[2]) + vv_[3] + SS2 + ww_[i]; TT2 = GG_00_15(vv_[4], vv_[5], vv_[6]) + vv_[7] + SS1 + ww[i]; vv_[3] = vv_[2]; vv_[2] = ROTATE(vv_[1], 9); vv_[1] = vv_[0]; vv_[0] = TT1; vv_[7] = vv_[6]; vv_[6] = ROTATE(vv_[5], 19); vv_[5] = vv_[4]; vv_[4] = P0(TT2); } for (i = 16; i < 64; i++) { aaa = ROTATE(vv_[0], 12); SS1 = aaa + vv_[4] + ROTATE(T_16_63, i); SS1 = ROTATE(SS1, 7); SS2 = SS1 ^ aaa; TT1 = FF_16_63(vv_[0], vv_[1], vv_[2]) + vv_[3] + SS2 + ww_[i]; TT2 = GG_16_63(vv_[4], vv_[5], vv_[6]) + vv_[7] + SS1 + ww[i]; vv_[3] = vv_[2]; vv_[2] = ROTATE(vv_[1], 9); vv_[1] = vv_[0]; vv_[0] = TT1; vv_[7] = vv_[6]; vv_[6] = ROTATE(vv_[5], 19); vv_[5] = vv_[4]; vv_[4] = P0(TT2); } for (i = 0; i < 8; i++) { vv[i] ^= vv_[i]; } // Reset xOff = 0; Array.Copy(X0, 0, X, 0, X0.Length); } internal override void ProcessWord(byte[] in_Renamed, int inOff) { int n = in_Renamed[inOff] << 24; n |= (in_Renamed[++inOff] & 0xff) << 16; n |= (in_Renamed[++inOff] & 0xff) << 8; n |= (in_Renamed[++inOff] & 0xff); X[xOff] = n; if (++xOff == 16) { ProcessBlock(); } } internal override void ProcessLength(long bitLength) { if (xOff > 14) { ProcessBlock(); } X[14] = (int) (SupportClass.URShift(bitLength, 32)); X[15] = (int) (bitLength & unchecked((int) 0xffffffff)); } public static void IntToBigEndian(int n, byte[] bs, int off) { bs[off] = (byte) (SupportClass.URShift(n, 24)); bs[++off] = (byte) (SupportClass.URShift(n, 16)); bs[++off] = (byte) (SupportClass.URShift(n, 8)); bs[++off] = (byte) (n); } public override int DoFinal(byte[] out_Renamed, int outOff) { Finish(); for (int i = 0; i < 8; i++) { IntToBigEndian(v[i], out_Renamed, outOff + i * 4); } Reset(); return DIGEST_LENGTH; } private int ROTATE(int x, int n) { return (x << n) | (SupportClass.URShift(x, (32 - n))); } private int P0(int X) { return ((X) ^ ROTATE((X), 9) ^ ROTATE((X), 17)); } private int P1(int X) { return ((X) ^ ROTATE((X), 15) ^ ROTATE((X), 23)); } private int FF_00_15(int X, int Y, int Z) { return (X ^ Y ^ Z); } private int FF_16_63(int X, int Y, int Z) { return ((X & Y) | (X & Z) | (Y & Z)); } private int GG_00_15(int X, int Y, int Z) { return (X ^ Y ^ Z); } private int GG_16_63(int X, int Y, int Z) { return ((X & Y) | (~ X & Z)); } //[STAThread] //public static void Main() //{ // byte[] md = new byte[32]; // byte[] msg1 = Encoding.Default.GetBytes("ererfeiisgod"); // SM3Digest sm3 = new SM3Digest(); // sm3.BlockUpdate(msg1, 0, msg1.Length); // sm3.DoFinal(md, 0); // System.String s = new UTF8Encoding().GetString(Hex.Encode(md)); // System.Console.Out.WriteLine(s.ToUpper()); // Console.ReadLine(); //} } }
三、SM4
主类
using System; using System.Collections.Generic; using System.IO; using System.Linq; using System.Text; using System.Threading.Tasks; namespace Com.Mlq.SM { class SM4 { public const int SM4_ENCRYPT = 1; public const int SM4_DECRYPT = 0; private long GET_ULONG_BE(byte[] b, int i) { long n = (long)(b[i] & 0xff) << 24 | (long)((b[i + 1] & 0xff) << 16) | (long)((b[i + 2] & 0xff) << 8) | (long)(b[i + 3] & 0xff) & 0xffffffffL; return n; } private void PUT_ULONG_BE(long n, byte[] b, int i) { b[i] = (byte)(int)(0xFF & n >> 24); b[i + 1] = (byte)(int)(0xFF & n >> 16); b[i + 2] = (byte)(int)(0xFF & n >> 8); b[i + 3] = (byte)(int)(0xFF & n); } private long SHL(long x, int n) { return (x & 0xFFFFFFFF) << n; } private long ROTL(long x, int n) { return SHL(x, n) | x >> (32 - n); } private void SWAP(long[] sk, int i) { long t = sk[i]; sk[i] = sk[(31 - i)]; sk[(31 - i)] = t; } public byte[] SboxTable = new byte[] { (byte) 0xd6, (byte) 0x90, (byte) 0xe9, (byte) 0xfe, (byte) 0xcc, (byte) 0xe1, 0x3d, (byte) 0xb7, 0x16, (byte) 0xb6, 0x14, (byte) 0xc2, 0x28, (byte) 0xfb, 0x2c, 0x05, 0x2b, 0x67, (byte) 0x9a, 0x76, 0x2a, (byte) 0xbe, 0x04, (byte) 0xc3, (byte) 0xaa, 0x44, 0x13, 0x26, 0x49, (byte) 0x86, 0x06, (byte) 0x99, (byte) 0x9c, 0x42, 0x50, (byte) 0xf4, (byte) 0x91, (byte) 0xef, (byte) 0x98, 0x7a, 0x33, 0x54, 0x0b, 0x43, (byte) 0xed, (byte) 0xcf, (byte) 0xac, 0x62, (byte) 0xe4, (byte) 0xb3, 0x1c, (byte) 0xa9, (byte) 0xc9, 0x08, (byte) 0xe8, (byte) 0x95, (byte) 0x80, (byte) 0xdf, (byte) 0x94, (byte) 0xfa, 0x75, (byte) 0x8f, 0x3f, (byte) 0xa6, 0x47, 0x07, (byte) 0xa7, (byte) 0xfc, (byte) 0xf3, 0x73, 0x17, (byte) 0xba, (byte) 0x83, 0x59, 0x3c, 0x19, (byte) 0xe6, (byte) 0x85, 0x4f, (byte) 0xa8, 0x68, 0x6b, (byte) 0x81, (byte) 0xb2, 0x71, 0x64, (byte) 0xda, (byte) 0x8b, (byte) 0xf8, (byte) 0xeb, 0x0f, 0x4b, 0x70, 0x56, (byte) 0x9d, 0x35, 0x1e, 0x24, 0x0e, 0x5e, 0x63, 0x58, (byte) 0xd1, (byte) 0xa2, 0x25, 0x22, 0x7c, 0x3b, 0x01, 0x21, 0x78, (byte) 0x87, (byte) 0xd4, 0x00, 0x46, 0x57, (byte) 0x9f, (byte) 0xd3, 0x27, 0x52, 0x4c, 0x36, 0x02, (byte) 0xe7, (byte) 0xa0, (byte) 0xc4, (byte) 0xc8, (byte) 0x9e, (byte) 0xea, (byte) 0xbf, (byte) 0x8a, (byte) 0xd2, 0x40, (byte) 0xc7, 0x38, (byte) 0xb5, (byte) 0xa3, (byte) 0xf7, (byte) 0xf2, (byte) 0xce, (byte) 0xf9, 0x61, 0x15, (byte) 0xa1, (byte) 0xe0, (byte) 0xae, 0x5d, (byte) 0xa4, (byte) 0x9b, 0x34, 0x1a, 0x55, (byte) 0xad, (byte) 0x93, 0x32, 0x30, (byte) 0xf5, (byte) 0x8c, (byte) 0xb1, (byte) 0xe3, 0x1d, (byte) 0xf6, (byte) 0xe2, 0x2e, (byte) 0x82, 0x66, (byte) 0xca, 0x60, (byte) 0xc0, 0x29, 0x23, (byte) 0xab, 0x0d, 0x53, 0x4e, 0x6f, (byte) 0xd5, (byte) 0xdb, 0x37, 0x45, (byte) 0xde, (byte) 0xfd, (byte) 0x8e, 0x2f, 0x03, (byte) 0xff, 0x6a, 0x72, 0x6d, 0x6c, 0x5b, 0x51, (byte) 0x8d, 0x1b, (byte) 0xaf, (byte) 0x92, (byte) 0xbb, (byte) 0xdd, (byte) 0xbc, 0x7f, 0x11, (byte) 0xd9, 0x5c, 0x41, 0x1f, 0x10, 0x5a, (byte) 0xd8, 0x0a, (byte) 0xc1, 0x31, (byte) 0x88, (byte) 0xa5, (byte) 0xcd, 0x7b, (byte) 0xbd, 0x2d, 0x74, (byte) 0xd0, 0x12, (byte) 0xb8, (byte) 0xe5, (byte) 0xb4, (byte) 0xb0, (byte) 0x89, 0x69, (byte) 0x97, 0x4a, 0x0c, (byte) 0x96, 0x77, 0x7e, 0x65, (byte) 0xb9, (byte) 0xf1, 0x09, (byte) 0xc5, 0x6e, (byte) 0xc6, (byte) 0x84, 0x18, (byte) 0xf0, 0x7d, (byte) 0xec, 0x3a, (byte) 0xdc, 0x4d, 0x20, 0x79, (byte) 0xee, 0x5f, 0x3e, (byte) 0xd7, (byte) 0xcb, 0x39, 0x48 }; public uint[] FK = { 0xa3b1bac6, 0x56aa3350, 0x677d9197, 0xb27022dc }; public uint[] CK = { 0x00070e15,0x1c232a31,0x383f464d,0x545b6269, 0x70777e85,0x8c939aa1,0xa8afb6bd,0xc4cbd2d9, 0xe0e7eef5,0xfc030a11,0x181f262d,0x343b4249, 0x50575e65,0x6c737a81,0x888f969d,0xa4abb2b9, 0xc0c7ced5,0xdce3eaf1,0xf8ff060d,0x141b2229, 0x30373e45,0x4c535a61,0x686f767d,0x848b9299, 0xa0a7aeb5,0xbcc3cad1,0xd8dfe6ed,0xf4fb0209, 0x10171e25,0x2c333a41,0x484f565d,0x646b7279 }; private byte sm4Sbox(byte inch) { int i = inch & 0xFF; byte retVal = SboxTable[i]; return retVal; } private long sm4Lt(long ka) { long bb = 0L; long c = 0L; byte[] a = new byte[4]; byte[] b = new byte[4]; PUT_ULONG_BE(ka, a, 0); b[0] = sm4Sbox(a[0]); b[1] = sm4Sbox(a[1]); b[2] = sm4Sbox(a[2]); b[3] = sm4Sbox(a[3]); bb = GET_ULONG_BE(b, 0); c = bb ^ ROTL(bb, 2) ^ ROTL(bb, 10) ^ ROTL(bb, 18) ^ ROTL(bb, 24); return c; } private long sm4F(long x0, long x1, long x2, long x3, long rk) { return x0 ^ sm4Lt(x1 ^ x2 ^ x3 ^ rk); } private long sm4CalciRK(long ka) { long bb = 0L; long rk = 0L; byte[] a = new byte[4]; byte[] b = new byte[4]; PUT_ULONG_BE(ka, a, 0); b[0] = sm4Sbox(a[0]); b[1] = sm4Sbox(a[1]); b[2] = sm4Sbox(a[2]); b[3] = sm4Sbox(a[3]); bb = GET_ULONG_BE(b, 0); rk = bb ^ ROTL(bb, 13) ^ ROTL(bb, 23); return rk; } private void sm4_setkey(long[] SK, byte[] key) { long[] MK = new long[4]; long[] k = new long[36]; int i = 0; MK[0] = GET_ULONG_BE(key, 0); MK[1] = GET_ULONG_BE(key, 4); MK[2] = GET_ULONG_BE(key, 8); MK[3] = GET_ULONG_BE(key, 12); k[0] = MK[0] ^ (long) FK[0]; k[1] = MK[1] ^ (long) FK[1]; k[2] = MK[2] ^ (long) FK[2]; k[3] = MK[3] ^ (long) FK[3]; for (; i < 32; i++) { k[(i + 4)] = (k[i] ^ sm4CalciRK(k[(i + 1)] ^ k[(i + 2)] ^ k[(i + 3)] ^ (long) CK[i])); SK[i] = k[(i + 4)]; } } private void sm4_one_round(long[] sk, byte[] input, byte[] output) { int i = 0; long[] ulbuf = new long[36]; ulbuf[0] = GET_ULONG_BE(input, 0); ulbuf[1] = GET_ULONG_BE(input, 4); ulbuf[2] = GET_ULONG_BE(input, 8); ulbuf[3] = GET_ULONG_BE(input, 12); while (i < 32) { ulbuf[(i + 4)] = sm4F(ulbuf[i], ulbuf[(i + 1)], ulbuf[(i + 2)], ulbuf[(i + 3)], sk[i]); i++; } PUT_ULONG_BE(ulbuf[35], output, 0); PUT_ULONG_BE(ulbuf[34], output, 4); PUT_ULONG_BE(ulbuf[33], output, 8); PUT_ULONG_BE(ulbuf[32], output, 12); } private byte[] padding(byte[] input, int mode) { if (input == null) { return null; } byte[] ret = (byte[]) null; if (mode == SM4_ENCRYPT) { int p = 16 - input.Length % 16; ret = new byte[input.Length + p]; Array.Copy(input, 0, ret, 0, input.Length); for (int i = 0; i < p; i++) { ret[input.Length + i] = (byte) p; } } else { int p = input[input.Length - 1]; ret = new byte[input.Length - p]; Array.Copy(input, 0, ret, 0, input.Length - p); } return ret; } public void sm4_setkey_enc(SM4_Context ctx, byte[] key) { ctx.mode = SM4_ENCRYPT; sm4_setkey(ctx.sk, key); } public void sm4_setkey_dec(SM4_Context ctx, byte[] key) { int i = 0; ctx.mode = SM4_DECRYPT; sm4_setkey(ctx.sk, key); for (i = 0; i < 16; i++) { SWAP(ctx.sk, i); } } public byte[] sm4_crypt_ecb(SM4_Context ctx, byte[] input) { if ((ctx.isPadding) && (ctx.mode == SM4_ENCRYPT)) { input = padding(input, SM4_ENCRYPT); } int length = input.Length; byte[] bins = new byte[length]; Array.Copy(input,0,bins,0,length); byte[] bous = new byte[length]; for(int i = 0 ; length > 0; length -= 16,i ++) { byte[] inBytes = new byte[16]; byte[] outBytes = new byte[16]; Array.Copy(bins, i * 16, inBytes, 0, length > 16 ? 16 : length); sm4_one_round(ctx.sk, inBytes, outBytes); Array.Copy(outBytes, 0, bous, i * 16, length > 16 ? 16 : length); } if (ctx.isPadding && ctx.mode == SM4_DECRYPT) { bous = padding(bous, SM4_DECRYPT); } return bous; } public byte[] sm4_crypt_cbc(SM4_Context ctx, byte[] iv, byte[] input) { if (ctx.isPadding && ctx.mode == SM4_ENCRYPT) { input = padding(input, SM4_ENCRYPT); } int i = 0; int length = input.Length; byte[] bins = new byte[length]; Array.Copy(input,0,bins,0,length); byte[] bous = null; List<byte> bousList = new List<byte>(); if (ctx.mode == SM4_ENCRYPT) { for(int j = 0; length > 0; length -= 16 , j ++) { byte[] inBytes = new byte[16]; byte[] outBytes = new byte[16]; byte[] out1 = new byte[16]; Array.Copy(bins, i * 16, inBytes, 0, length > 16 ? 16 : length); for (i = 0; i < 16; i++) { outBytes[i] = ((byte) (inBytes[i] ^ iv[i])); } sm4_one_round(ctx.sk, outBytes, out1); Array.Copy(out1, 0, iv, 0, 16); for(int k = 0;k < 16;k ++){ bousList.Add(out1[k]); } } } else { byte[] temp = new byte[16]; for(int j = 0; length > 0; length -= 16 , j ++) { byte[] inBytes = new byte[16]; byte[] outBytes = new byte[16]; byte[] out1 = new byte[16]; Array.Copy(bins, i * 16, inBytes, 0, length > 16 ? 16 : length); Array.Copy(inBytes, 0, temp, 0, 16); sm4_one_round(ctx.sk, inBytes, outBytes); for (i = 0; i < 16; i++) { out1[i] = ((byte) (outBytes[i] ^ iv[i])); } Array.Copy(temp, 0, iv, 0, 16); for (int k = 0; k < 16; k++) { bousList.Add(out1[k]); } } } if (ctx.isPadding && ctx.mode == SM4_DECRYPT) { bous = padding(bousList.ToArray(), SM4_DECRYPT); return bous; } else { return bousList.ToArray(); } } } }
SM4实体类
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace Com.Mlq.SM { class SM4_Context { public int mode; public long[] sk; public bool isPadding; public SM4_Context() { this.mode = 1; this.isPadding = true; this.sk = new long[32]; } } }
SM4工具类
using Org.BouncyCastle.Utilities.Encoders; using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace Com.Mlq.SM { class SM4Utils { public String secretKey = ""; public String iv = ""; public bool hexString = false; public String Encrypt_ECB(String plainText) { SM4_Context ctx = new SM4_Context(); ctx.isPadding = true; ctx.mode = SM4.SM4_ENCRYPT; byte[] keyBytes; if (hexString) { keyBytes = Hex.Decode(secretKey); } else { keyBytes = Encoding.Default.GetBytes(secretKey); } SM4 sm4 = new SM4(); sm4.sm4_setkey_enc(ctx, keyBytes); byte[] encrypted = sm4.sm4_crypt_ecb(ctx, Encoding.Default.GetBytes(plainText)); String cipherText = Encoding.Default.GetString(Hex.Encode(encrypted)); return cipherText; } public String Decrypt_ECB(String cipherText) { SM4_Context ctx = new SM4_Context(); ctx.isPadding = true; ctx.mode = SM4.SM4_DECRYPT; byte[] keyBytes; if (hexString) { keyBytes = Hex.Decode(secretKey); } else { keyBytes = Encoding.Default.GetBytes(secretKey); } SM4 sm4 = new SM4(); sm4.sm4_setkey_dec(ctx, keyBytes); byte[] decrypted = sm4.sm4_crypt_ecb(ctx, Hex.Decode(cipherText)); return Encoding.Default.GetString(decrypted); } public String Encrypt_CBC(String plainText) { SM4_Context ctx = new SM4_Context(); ctx.isPadding = true; ctx.mode = SM4.SM4_ENCRYPT; byte[] keyBytes; byte[] ivBytes; if (hexString) { keyBytes = Hex.Decode(secretKey); ivBytes = Hex.Decode(iv); } else { keyBytes = Encoding.Default.GetBytes(secretKey); ivBytes = Encoding.Default.GetBytes(iv); } SM4 sm4 = new SM4(); sm4.sm4_setkey_enc(ctx, keyBytes); byte[] encrypted = sm4.sm4_crypt_cbc(ctx, ivBytes, Encoding.Default.GetBytes(plainText)); String cipherText = Encoding.Default.GetString(Hex.Encode(encrypted)); return cipherText; } public String Decrypt_CBC(String cipherText) { SM4_Context ctx = new SM4_Context(); ctx.isPadding = true; ctx.mode = SM4.SM4_DECRYPT; byte[] keyBytes; byte[] ivBytes; if (hexString) { keyBytes = Hex.Decode(secretKey); ivBytes = Hex.Decode(iv); } else { keyBytes = Encoding.Default.GetBytes(secretKey); ivBytes = Encoding.Default.GetBytes(iv); } SM4 sm4 = new SM4(); sm4.sm4_setkey_dec(ctx, keyBytes); byte[] decrypted = sm4.sm4_crypt_cbc(ctx, ivBytes, Hex.Decode(cipherText)); return Encoding.Default.GetString(decrypted); } //[STAThread] //public static void Main() //{ // String plainText = "ererfeiisgod"; // SM4Utils sm4 = new SM4Utils(); // sm4.secretKey = "JeF8U9wHFOMfs2Y8"; // sm4.hexString = false; // System.Console.Out.WriteLine("ECB模式"); // String cipherText = sm4.Encrypt_ECB(plainText); // System.Console.Out.WriteLine("密文: " + cipherText); // System.Console.Out.WriteLine(""); // plainText = sm4.Decrypt_ECB(cipherText); // System.Console.Out.WriteLine("明文: " + plainText); // System.Console.Out.WriteLine(""); // System.Console.Out.WriteLine("CBC模式"); // sm4.iv = "UISwD9fW6cFh9SNS"; // cipherText = sm4.Encrypt_CBC(plainText); // System.Console.Out.WriteLine("密文: " + cipherText); // System.Console.Out.WriteLine(""); // plainText = sm4.Decrypt_CBC(cipherText); // System.Console.Out.WriteLine("明文: " + plainText); // Console.ReadLine(); //} } }