Problem 18
http://projecteuler.net/problem=18
Maximum path sum I
Problem 18
By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23.
3
7 4
2 4 6
8 5 9 3
That is, 3 + 7 + 4 + 9 = 23.
Find the maximum total from top to bottom of the triangle below:
75
95 64
17 47 82
18 35 87 10
20 04 82 47 65
19 01 23 75 03 34
88 02 77 73 07 63 67
99 65 04 28 06 16 70 92
41 41 26 56 83 40 80 70 33
41 48 72 33 47 32 37 16 94 29
53 71 44 65 25 43 91 52 97 51 14
70 11 33 28 77 73 17 78 39 68 17 57
91 71 52 38 17 14 91 43 58 50 27 29 48
63 66 04 68 89 53 67 30 73 16 69 87 40 31
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23
NOTE: As there are only 16384 routes, it is possible to solve this problem by trying every route. However, Problem 67, is the same challenge with a triangle containing one-hundred rows; it cannot be solved by brute force, and requires a clever method! ;o)
1 int trib[15][15]={{75 }, 2 {95,64 }, 3 {17,47,82 }, 4 {18,35,87,10 }, 5 {20,4,82,47,65 }, 6 {19,1,23,75,3,34 }, 7 {88,2,77,73,7,63,67 }, 8 {99,65,4,28,6,16,70,92 }, 9 {41,41,26,56,83,40,80,70,33 }, 10 {41,48,72,33,47,32,37,16,94,29 }, 11 {53,71,44,65,25,43,91,52,97,51,14 }, 12 {70,11,33,28,77,73,17,78,39,68,17,57 }, 13 {91,71,52,38,17,14,91,43,58,50,27,29,48 }, 14 {63,66,4,68,89,53,67,30,73,16,69,87,40,31 }, 15 {4,62,98,27,23,9,70,98,73,93,38,53,60,4,23 }}; 16 17 int max_1=0; 18 void cc(int sum,int i,int j) 19 { 20 if(i==14) 21 { 22 if((sum+trib[i][j]) > max_1) 23 max_1 = sum+trib[i][j]; 24 return; 25 } 26 else{ 27 cc(sum+trib[i][j],i+1,j); 28 cc(sum+trib[i][j],i+1,j+1); 29 } 30 } 31 32 void p18() 33 { 34 cc(0,0,0); 35 cout<<max_1<<endl; 36 }