spring---transaction(1)---源代码分析(事务的拦截器TransactionInterceptor)
写在前面:
- 先了解一下spring的事务。分为分明式事务管理和注解式事务管理,对于前期的事务,spring会通过扫描拦截对于事务的方法进行增强(以后讲解)。
- 若果目标方法存在事务,spring产出的bean会是一个代理对象(cglib或者jdk)。
- 本问讨论的是spring拦截到事务,对于事务的增强处理。
spring自己的一系列接口设计
-
- PlatformTransactionManager 事务管理器
- TransactionDefinition 事务定义
- TransactionStatus 事务状态
TranctionInterceptor之前了解
- 看过spring源码的同学一定都会找spring tx的入口就是在TxAdviceBeanDefinitionParser这里将解析tx的配置,生成TransactionInterceptor对象,这个也就是一个普通的切面类,只要符合AOP规则的调用都会进入此切面。
- ransactionInterceptor支撑着整个事务功能的架构,逻辑还是相对复杂的,那么现在我们切入正题来分析此拦截器是如何实现事务特性的。
- spring在处理事务的aop增强是,主要调用了return ((MethodInterceptor) interceptorOrInterceptionAdvice).invoke(this);
TranctionInterceptor
首先看TranctionInterceptor(位于spring-tx-*.jar中的org.springframework.transaction.interceptor)的结构:
继承类TransactionAspectSupport:其实对其进行了增强(模板方法模式)
实现接口MethodInterceptor:方法拦截器,执行代理类的目标方法,会触发invoke方法执行
public class TransactionInterceptor extends TransactionAspectSupport implements MethodInterceptor, Serializable { @Override //实现了MethodInterceptor的invoke方法 public Object invoke(final MethodInvocation invocation) throws Throwable { //获取目标类 Class<?> targetClass = (invocation.getThis() != null ? AopUtils.getTargetClass(invocation.getThis()) : null); //父类TransactionAspectSupport的模板方法 return invokeWithinTransaction(invocation.getMethod(), targetClass, new InvocationCallback() { @Override //InvocationCallback接口的回调方法 public Object proceedWithInvocation() throws Throwable { //执行目标方法 return invocation.proceed(); } }); } }
重点分析 抽象类TransactionAspectSupport(基类)的invokeWithinTransaction方法
public abstract class TransactionAspectSupport implements BeanFactoryAware, InitializingBean { //protected修饰,不允许其他包和无关类调用 protected Object invokeWithinTransaction(Method method, Class<?> targetClass, final InvocationCallback invocation) throws Throwable { // 获取对应事务属性.如果事务属性为空(则目标方法不存在事务) final TransactionAttribute txAttr = getTransactionAttributeSource().getTransactionAttribute(method, targetClass); // 根据事务的属性获取beanFactory中的PlatformTransactionManager(spring事务管理器的顶级接口),一般这里或者的是DataSourceTransactiuonManager final PlatformTransactionManager tm = determineTransactionManager(txAttr); // 目标方法唯一标识(类.方法,如service.UserServiceImpl.save) final String joinpointIdentification = methodIdentification(method, targetClass); //如果txAttr为空或者tm 属于非CallbackPreferringPlatformTransactionManager,执行目标增强 ① if (txAttr == null || !(tm instanceof CallbackPreferringPlatformTransactionManager)) { //看是否有必要创建一个事务,根据事务传播行为,做出相应的判断 TransactionInfo txInfo = createTransactionIfNecessary(tm, txAttr, joinpointIdentification); Object retVal = null; try { //回调方法执行,执行目标方法(原有的业务逻辑) retVal = invocation.proceedWithInvocation(); } catch (Throwable ex) { // 异常回滚 completeTransactionAfterThrowing(txInfo, ex); throw ex; } finally { //清除信息 cleanupTransactionInfo(txInfo); } //提交事务 commitTransactionAfterReturning(txInfo); return retVal; } //编程式事务处理(CallbackPreferringPlatformTransactionManager) 不做重点分析 else { try { Object result = ((CallbackPreferringPlatformTransactionManager) tm).execute(txAttr, new TransactionCallback<Object>() { @Override public Object doInTransaction(TransactionStatus status) { TransactionInfo txInfo = prepareTransactionInfo(tm, txAttr, joinpointIdentification, status); try { return invocation.proceedWithInvocation(); } catch (Throwable ex) { if (txAttr.rollbackOn(ex)) { // A RuntimeException: will lead to a rollback. if (ex instanceof RuntimeException) { throw (RuntimeException) ex; } else { throw new ThrowableHolderException(ex); } } else { // A normal return value: will lead to a commit. return new ThrowableHolder(ex); } } finally { cleanupTransactionInfo(txInfo); } } }); // Check result: It might indicate a Throwable to rethrow. if (result instanceof ThrowableHolder) { throw ((ThrowableHolder) result).getThrowable(); } else { return result; } } catch (ThrowableHolderException ex) { throw ex.getCause(); } } } }
- ①不同的事务处理方式使用不同的逻辑。对于声明式事务的处理与编程式事务的处理,第一点区别在于事务属性上,因为编程式的事务处理是不需要有事务属性的,第二点区别就是在TransactionManager上,CallbackPreferringPlatformTransactionManager实现PlatformTransactionManager接口,暴露出一个方法用于执行事务处理中的回调。所以,这两种方式都可以用作事务处理方式的判断。
重点分析createTransactionIfNecessary方法,它会判断是否存在事务,根据事务的传播属性。做出不同的处理,也是做了一层包装,核心是通过TransactionStatus来判断事务的属性。
通过持有的PlatformTransactionManager来获取TransactionStatus
AbstractPlatformTransactionManager.java(spring中存在很多模板方法,对于 Abstract开头的封装的抽象类,基本都有模板方法,且为final修饰)
@Override public final TransactionStatus getTransaction(TransactionDefinition definition) throws TransactionException {
//这里其实主要就是调用PlatformTransactionManager的getTransactionf方法来获取TransactionStatus来开启一个事务: Object transaction = doGetTransaction(); // Cache debug flag to avoid repeated checks. boolean debugEnabled = logger.isDebugEnabled(); if (definition == null) { // Use defaults if no transaction definition given. definition = new DefaultTransactionDefinition(); } //这个判断很重要,是否已经存在的一个transaction if (isExistingTransaction(transaction)) {
//如果是存在的将进行一些处理 // Existing transaction found -> check propagation behavior to find out how to behave. return handleExistingTransaction(definition, transaction, debugEnabled); } // Check definition settings for new transaction. if (definition.getTimeout() < TransactionDefinition.TIMEOUT_DEFAULT) { throw new InvalidTimeoutException("Invalid transaction timeout", definition.getTimeout()); } // No existing transaction found -> check propagation behavior to find out how to proceed. if (definition.getPropagationBehavior() == TransactionDefinition.PROPAGATION_MANDATORY) { throw new IllegalTransactionStateException( "No existing transaction found for transaction marked with propagation 'mandatory'"); }
//如果是PROPAGATION_REQUIRED,PROPAGATION_REQUIRES_NEW,PROPAGATION_NESTED这三种类型将开启一个新的事务 else if (definition.getPropagationBehavior() == TransactionDefinition.PROPAGATION_REQUIRED || definition.getPropagationBehavior() == TransactionDefinition.PROPAGATION_REQUIRES_NEW || definition.getPropagationBehavior() == TransactionDefinition.PROPAGATION_NESTED) { SuspendedResourcesHolder suspendedResources = suspend(null); if (debugEnabled) { logger.debug("Creating new transaction with name [" + definition.getName() + "]: " + definition); } try { boolean newSynchronization = (getTransactionSynchronization() != SYNCHRONIZATION_NEVER); DefaultTransactionStatus status = newTransactionStatus( definition, transaction, true, newSynchronization, debugEnabled, suspendedResources);
//开启新事物 doBegin(transaction, definition); prepareSynchronization(status, definition); return status; } catch (RuntimeException ex) { resume(null, suspendedResources); throw ex; } catch (Error err) { resume(null, suspendedResources); throw err; } } else { // Create "empty" transaction: no actual transaction, but potentially synchronization. if (definition.getIsolationLevel() != TransactionDefinition.ISOLATION_DEFAULT && logger.isWarnEnabled()) { logger.warn("Custom isolation level specified but no actual transaction initiated; " + "isolation level will effectively be ignored: " + definition); } boolean newSynchronization = (getTransactionSynchronization() == SYNCHRONIZATION_ALWAYS); return prepareTransactionStatus(definition, null, true, newSynchronization, debugEnabled, null); } }
这段代码比较长也是比较核心的一段代码,让我们来慢慢分析,首先这里将执行doGetTransaction方法来获取一个transaction,和dobegin方法如何开启一个事务
AbstractPlatformTransactionManager并没有给出doGetTransaction的具体实现。而是由子类实现。
我们以分析实现类DataSourceTransactionManager的具体方法。
public class DataSourceTransactionManager extends AbstractPlatformTransactionManager implements ResourceTransactionManager, InitializingBean { private DataSource dataSource; @Override
//这段代码中主要是根据this.dataSource来获取ConnectionHolder,这个ConnectionHolder是放在TransactionSynchronizationManager的ThreadLocal中持有的,如果是第一次来获取,肯定得到是null。 protected Object doGetTransaction() { DataSourceTransactionObject txObject = new DataSourceTransactionObject(); txObject.setSavepointAllowed(isNestedTransactionAllowed());
//这一行代码中TransactionSynchronizationManager很重要,是对connection的核心获取、持有、删除等 ConnectionHolder conHolder = (ConnectionHolder) TransactionSynchronizationManager.getResource(this.dataSource);
//这里不论获取到或者获取不到都将此设置newConnectionHolder为false txObject.setConnectionHolder(conHolder, false); return txObject; }
接着代码往下将执行到isExistingTransaction(transaction),这里主要是依据下面代码判断:
@Override protected boolean isExistingTransaction(Object transaction) { DataSourceTransactionObject txObject = (DataSourceTransactionObject) transaction;
//如果是第一次开启事务这里必然是false,否则将返回true。 return (txObject.getConnectionHolder() != null && txObject.getConnectionHolder().isTransactionActive()); }
我们这里先讨论第一次进入的情况,也就是false的时候将继续往下执行到了判断事务Propagation的时候了,如果Propagation为:ROPAGATION_REQUIRED,PROPAGATION_REQUIRES_NEW,PROPAGATION_NESTED中的一个将开启一个新事物,new一个新的DefaultTransactionStatus ,并且newTransaction设置为true,这个状态很重要,因为后面的不论回滚、提交都是根据这个属性来判断是否在这个TransactionStatus上来进行。
接着将执行doBegin方法:
protected void doBegin(Object transaction, TransactionDefinition definition) { DataSourceTransactionObject txObject = (DataSourceTransactionObject) transaction; Connection con = null; try { if (txObject.getConnectionHolder() == null || txObject.getConnectionHolder().isSynchronizedWithTransaction()) {
//从dataSource中获取一个Connection Connection newCon = this.dataSource.getConnection(); if (logger.isDebugEnabled()) { logger.debug("Acquired Connection [" + newCon + "] for JDBC transaction"); }
//为当前Transaction设置ConnectionHolder,并且设置newConnectionHolder为true txObject.setConnectionHolder(new ConnectionHolder(newCon), true); } txObject.getConnectionHolder().setSynchronizedWithTransaction(true); con = txObject.getConnectionHolder().getConnection(); //这里主要是根据definition对connection进行一些设置 Integer previousIsolationLevel = DataSourceUtils.prepareConnectionForTransaction(con, definition); txObject.setPreviousIsolationLevel(previousIsolationLevel); // Switch to manual commit if necessary. This is very expensive in some JDBC drivers, // so we don't want to do it unnecessarily (for example if we've explicitly // configured the connection pool to set it already). if (con.getAutoCommit()) { txObject.setMustRestoreAutoCommit(true); if (logger.isDebugEnabled()) { logger.debug("Switching JDBC Connection [" + con + "] to manual commit"); }
//开启事务,设置autoCommit为false con.setAutoCommit(false); }
//这里设置transactionActive为true,还记得签名判断是否存在的transaction吧?就是根据这个 txObject.getConnectionHolder().setTransactionActive(true); int timeout = determineTimeout(definition); if (timeout != TransactionDefinition.TIMEOUT_DEFAULT) { txObject.getConnectionHolder().setTimeoutInSeconds(timeout); } // Bind the session holder to the thread. if (txObject.isNewConnectionHolder()) {
//这里将当前的connection放入TransactionSynchronizationManager中持有,如果下次调用可以判断为已有的事务 TransactionSynchronizationManager.bindResource(getDataSource(), txObject.getConnectionHolder()); } } catch (Throwable ex) { if (txObject.isNewConnectionHolder()) { DataSourceUtils.releaseConnection(con, this.dataSource); txObject.setConnectionHolder(null, false); } throw new CannotCreateTransactionException("Could not open JDBC Connection for transaction", ex); } }
TransactionSynchronizationManager中持有,记得前面doGetTransaction方法吧,如果同一个线程,再此进入执行的话就会获取到同一个ConnectionHolder,在后面的isExistingTransaction方法也可以判定为是已有的transaction。
接下来将执行prepareSynchronization方法,主要是对TransactionSynchronizationManager的一系列设置。然后将返回上层代码执行prepareTransactionInfo方法
TransactionAspectSupport.java
protected TransactionInfo prepareTransactionInfo(PlatformTransactionManager tm, TransactionAttribute txAttr, String joinpointIdentification, TransactionStatus status) { TransactionInfo txInfo = new TransactionInfo(tm, txAttr, joinpointIdentification); if (txAttr != null) { // We need a transaction for this method if (logger.isTraceEnabled()) { logger.trace("Getting transaction for [" + txInfo.getJoinpointIdentification() + "]"); } // The transaction manager will flag an error if an incompatible tx already exists txInfo.newTransactionStatus(status); } else { // The TransactionInfo.hasTransaction() method will return // false. We created it only to preserve the integrity of // the ThreadLocal stack maintained in this class. if (logger.isTraceEnabled()) logger.trace("Don't need to create transaction for [" + joinpointIdentification + "]: This method isn't transactional."); } // We always bind the TransactionInfo to the thread, even if we didn't create // a new transaction here. This guarantees that the TransactionInfo stack // will be managed correctly even if no transaction was created by this aspect. txInfo.bindToThread(); return txInfo; }
这里其实比较简单主要生成一个TransactionInfo并绑定到当前线程的ThreadLocal
private void bindToThread() { // Expose current TransactionStatus, preserving any existing TransactionStatus // for restoration after this transaction is complete. this.oldTransactionInfo = transactionInfoHolder.get(); transactionInfoHolder.set(this); }
然后再返回到上层代码,接着就是执行相应的逻辑代码了
retVal = invocation.proceed();
执行过程的finally代码块将执行cleanupTransactionInfo(txInfo);
protected void cleanupTransactionInfo(TransactionInfo txInfo) { if (txInfo != null) {
//这里就是将txInfo进行重置工作,让它恢复到前一个状态。 txInfo.restoreThreadLocalStatus(); } }
然后就是提交操作(commitTransactionAfterReturning)或者是回滚操作(completeTransactionAfterThrowing)了。这里就拿提交操作来为例来说明,回滚操作类似:
protected void commitTransactionAfterReturning(TransactionInfo txInfo) { if (txInfo != null && txInfo.hasTransaction()) { if (logger.isTraceEnabled()) { logger.trace("Completing transaction for [" + txInfo.getJoinpointIdentification() + "]"); } txInfo.getTransactionManager().commit(txInfo.getTransactionStatus()); } }
实际就是执行的processCommit方法
private void processCommit(DefaultTransactionStatus status) throws TransactionException { try { boolean beforeCompletionInvoked = false; try { prepareForCommit(status); triggerBeforeCommit(status); triggerBeforeCompletion(status); beforeCompletionInvoked = true; boolean globalRollbackOnly = false; if (status.isNewTransaction() || isFailEarlyOnGlobalRollbackOnly()) { globalRollbackOnly = status.isGlobalRollbackOnly(); } if (status.hasSavepoint()) { if (status.isDebug()) { logger.debug("Releasing transaction savepoint"); } status.releaseHeldSavepoint(); } else if (status.isNewTransaction()) { if (status.isDebug()) { logger.debug("Initiating transaction commit"); } doCommit(status); } // Throw UnexpectedRollbackException if we have a global rollback-only // marker but still didn't get a corresponding exception from commit. if (globalRollbackOnly) { throw new UnexpectedRollbackException( "Transaction silently rolled back because it has been marked as rollback-only"); } } catch (UnexpectedRollbackException ex) { // can only be caused by doCommit triggerAfterCompletion(status, TransactionSynchronization.STATUS_ROLLED_BACK); throw ex; } catch (TransactionException ex) { // can only be caused by doCommit if (isRollbackOnCommitFailure()) { doRollbackOnCommitException(status, ex); } else { triggerAfterCompletion(status, TransactionSynchronization.STATUS_UNKNOWN); } throw ex; } catch (RuntimeException ex) { if (!beforeCompletionInvoked) { triggerBeforeCompletion(status); } doRollbackOnCommitException(status, ex); throw ex; } catch (Error err) { if (!beforeCompletionInvoked) { triggerBeforeCompletion(status); } doRollbackOnCommitException(status, err); throw err; } // Trigger afterCommit callbacks, with an exception thrown there // propagated to callers but the transaction still considered as committed. try { triggerAfterCommit(status); } finally { triggerAfterCompletion(status, TransactionSynchronization.STATUS_COMMITTED); } } finally { cleanupAfterCompletion(status); } }
首先将执行一些提交前的准备工作,这里将进行是否有savepoint判断status.hasSavepoint(),如果有的话将进行释放savePoint,即getConnectionHolderForSavepoint().getConnection().releaseSavepoint((Savepoint) savepoint);
接着就判断是否是新的transaction:status.isNewTransaction(),如果是的话将执行 doCommit(status);
@Override protected void doCommit(DefaultTransactionStatus status) { DataSourceTransactionObject txObject = (DataSourceTransactionObject) status.getTransaction(); Connection con = txObject.getConnectionHolder().getConnection(); if (status.isDebug()) { logger.debug("Committing JDBC transaction on Connection [" + con + "]"); } try {
//其实也就是调用了Connection的commit()方法。 con.commit(); } catch (SQLException ex) { throw new TransactionSystemException("Could not commit JDBC transaction", ex); } }
最后无论成功与否都将调用finally块中的cleanupAfterCompletion(status)
private void cleanupAfterCompletion(DefaultTransactionStatus status) { status.setCompleted(); if (status.isNewSynchronization()) {
////TransactionSynchronizationManager清理工作 TransactionSynchronizationManager.clear(); } if (status.isNewTransaction()) {
//这个比较重要(重点分析) doCleanupAfterCompletion(status.getTransaction()); } if (status.getSuspendedResources() != null) { if (status.isDebug()) { logger.debug("Resuming suspended transaction after completion of inner transaction"); } resume(status.getTransaction(), (SuspendedResourcesHolder) status.getSuspendedResources()); } }
首先对TransactionSynchronizationManager进行一系列清理工作,然后就将执行doCleanupAfterCompletion方法:
@Override protected void doCleanupAfterCompletion(Object transaction) { DataSourceTransactionObject txObject = (DataSourceTransactionObject) transaction; // Remove the connection holder from the thread, if exposed. if (txObject.isNewConnectionHolder()) {
////从TransactionSynchronizationManager中解绑相应的connectionHolder TransactionSynchronizationManager.unbindResource(this.dataSource); } // Reset connection. Connection con = txObject.getConnectionHolder().getConnection(); try { if (txObject.isMustRestoreAutoCommit()) {
//对获取到的Connection进行一些还原 con.setAutoCommit(true); } DataSourceUtils.resetConnectionAfterTransaction(con, txObject.getPreviousIsolationLevel()); } catch (Throwable ex) { logger.debug("Could not reset JDBC Connection after transaction", ex); } if (txObject.isNewConnectionHolder()) { if (logger.isDebugEnabled()) { logger.debug("Releasing JDBC Connection [" + con + "] after transaction"); }
////如果是newConnection将这个链接关闭,如果是连接池将还给连接池 DataSourceUtils.releaseConnection(con, this.dataSource); } //这里将这只transactionActive为false txObject.getConnectionHolder().clear(); }
其实就是将TransactionSynchronizationManager中持有的connectionHolder释放,并且还原当前Connection 的状态,然后将对当前的transaction进行清理包括设置transactionActive为false等。
至此整个spring的事务过程也就结束了。