【Android】Fresco图片加载框架(二)————Producer

/**
* 本文可以随意转载到任何网站或者App,
* BUT
* 转载也要按“基本法”,
* 请注明原文出处和作者
*/

 

 

官方源码地址

 
fresco官方高大上介绍(1)(注意:前方有堵墙)
fresco官方高大上介绍(2)(注意:前方有堵墙)
 
介绍:
上一篇大概介绍了fresco这个lib的整体结构和流程,这篇主要介绍fresco中关键的一部分--Producer
 
个人觉得,Producer基本是整个ImagePipeline module的核心,串联了整个图片读取的流程和各个细节(decode,resize等等)的处理,而且感觉整个设计上很有意思,读完感觉收益匪浅。
 
 
正文:
(分析主要是代码,相当枯燥~~~sigh)
 
以一次网络请求的例,进行分析,其他类型的请求,例如从cache中读取图片等,都差不多。
 
SimpleDraweeView#setController后,图片拉取的流程就开始了(详细流程可以参看上一篇的流程图)。忽略掉大部分细节,流程会来到(PipelineDraweeControllerBuilder.java):
 
  @Override
  protected DataSource<CloseableReference<CloseableImage>> getDataSourceForRequest(
          ImageRequest imageRequest,
          Object callerContext,
          boolean bitmapCacheOnly) {
    if (bitmapCacheOnly) {
      return mImagePipeline.fetchImageFromBitmapCache(imageRequest, callerContext);
    } else {
      return mImagePipeline.fetchDecodedImage(imageRequest, callerContext);
    }
  }

 

 
这里就是开始图片拉取,转入到ImagePipeline核心流程。这里就是调用的ImagePipelinefetchDecodeImage方法,从名字看,意思就是“获取一张decode(解码)的图片”,其代码(ImagePipeline.java):
 
  /**
   * Submits a request for execution and returns a DataSource representing the pending decoded
   * image(s).
   * <p>The returned DataSource must be closed once the client has finished with it.
   * @param imageRequest the request to submit
   * @return a DataSource representing the pending decoded image(s)
   */
  public DataSource<CloseableReference<CloseableImage>> fetchDecodedImage(
          ImageRequest imageRequest,
          Object callerContext) {
    try {
      Producer<CloseableReference<CloseableImage>> producerSequence =
              mProducerSequenceFactory.getDecodedImageProducerSequence(imageRequest);
      return submitFetchRequest(
              producerSequence,
              imageRequest,
              ImageRequest.RequestLevel.FULL_FETCH,
              callerContext);
    } catch (Exception exception) {
      return DataSources.immediateFailedDataSource(exception);
    }
  }

 

 
这里有两个主要的函数:getDecodedImageProducerSequencesubmitFetchRequest
 
getDecodedImageProducerSequence的返回值就是一个Producer<CloseableReference<CloseableImage>>。该值作为参数,传到第二个函数submitFetchRequest中,先看submitFetchRequest
 
  private <T> DataSource<CloseableReference<T>> submitFetchRequest(
          Producer<CloseableReference<T>> producerSequence,
          ImageRequest imageRequest,
          ImageRequest.RequestLevel lowestPermittedRequestLevelOnSubmit,
          Object callerContext) {
    try {
      ImageRequest.RequestLevel lowestPermittedRequestLevel =
              ImageRequest.RequestLevel.getMax(
                      imageRequest.getLowestPermittedRequestLevel(),
                      lowestPermittedRequestLevelOnSubmit);
      SettableProducerContext settableProducerContext = new SettableProducerContext(
              imageRequest,
              generateUniqueFutureId(),
              mRequestListener,
              callerContext,
              lowestPermittedRequestLevel,
/* isPrefetch */ false,
              imageRequest.getProgressiveRenderingEnabled() ||
                      !UriUtil.isNetworkUri(imageRequest.getSourceUri()),
              imageRequest.getPriority());
      return CloseableProducerToDataSourceAdapter.create(
              producerSequence,
              settableProducerContext,
              mRequestListener);
    } catch (Exception exception) {
      return DataSources.immediateFailedDataSource(exception);
    }
  }

 

 
然后上面的create函数,就会一直到(AbstractProducerToDataSourceAdapter.java):
 
 
  protected AbstractProducerToDataSourceAdapter(
          Producer<T> producer,
          SettableProducerContext settableProducerContext,
          RequestListener requestListener) {
    mSettableProducerContext = settableProducerContext;
    mRequestListener = requestListener;
    mRequestListener.onRequestStart(
            settableProducerContext.getImageRequest(),
            mSettableProducerContext.getCallerContext(),
            mSettableProducerContext.getId(),
            mSettableProducerContext.isPrefetch());
    producer.produceResults(createConsumer(), settableProducerContext);
  }

 

 
到最后,submitFetchRequest会调用到Producer#produceResults方法,而这个producer就是前面那个getDecodedImageProducerSequence方法产生的,所以回头看这个最最关键的地方
 
getDecodedImageProducerSequenceProducerSequenceFactory.java的方法:
 
  /**
   * Returns a sequence that can be used for a request for a decoded image.
   *
   * @param imageRequest the request that will be submitted
   * @return the sequence that should be used to process the request
   */
  public Producer<CloseableReference<CloseableImage>> getDecodedImageProducerSequence(
          ImageRequest imageRequest) {
    Producer<CloseableReference<CloseableImage>> pipelineSequence =
            getBasicDecodedImageSequence(imageRequest);
    if (imageRequest.getPostprocessor() != null) {
      return getPostprocessorSequence(pipelineSequence);
    } else {
      return pipelineSequence;
    }
  }

 

 
从注释看,方法的意思就是返回一个用于请求decoded图片的sequence,而事实上,应该是返回一个Producer才对啊,
那为什么是强调是sequence Producer,而不是,仅仅就是一个Producer?
 
带着疑问继续看:
 
 
private Producer<CloseableReference<CloseableImage>> getBasicDecodedImageSequence(
          ImageRequest imageRequest) {
    Preconditions.checkNotNull(imageRequest);

    Uri uri = imageRequest.getSourceUri();
    Preconditions.checkNotNull(uri, "Uri is null.");
    if (UriUtil.isNetworkUri(uri)) {
      return getNetworkFetchSequence();
    } else if (UriUtil.isLocalFileUri(uri)) {
      if (MediaUtils.isVideo(MediaUtils.extractMime(uri.getPath()))) {
        return getLocalVideoFileFetchSequence();
      } else {
        return getLocalImageFileFetchSequence();
      }
    } else if (UriUtil.isLocalContentUri(uri)) {
      return getLocalContentUriFetchSequence();
    } else if (UriUtil.isLocalAssetUri(uri)) {
      return getLocalAssetFetchSequence();
    } else if (UriUtil.isLocalResourceUri(uri)) {
      return getLocalResourceFetchSequence();
    } else if (UriUtil.isDataUri(uri)) {
      return getDataFetchSequence();
    } else {
      String uriString = uri.toString();
      if (uriString.length() > 30) {
        uriString = uriString.substring(0, 30) + "...";
      }
      throw new RuntimeException("Unsupported uri scheme! Uri is: " + uriString);
    }
  }

 

看代码可知道,就是根据ImageRequestUri,选择一个sequence Producer,我们这里假设是网络请求图片,所以选择的是图中红色方法getNetworkFetchSequence它也是返回一个Producer(可粗略看)
 
  /**
   * swallow result if prefetch -> bitmap cache get ->
   * background thread hand-off -> multiplex -> bitmap cache -> decode -> multiplex ->
   * encoded cache -> disk cache -> (webp transcode) -> network fetch.
   */
  private synchronized Producer<CloseableReference<CloseableImage>> getNetworkFetchSequence() {
    if (mNetworkFetchSequence == null) {
      mNetworkFetchSequence =
              newBitmapCacheGetToDecodeSequence(getCommonNetworkFetchToEncodedMemorySequence());
    }
    return mNetworkFetchSequence;
  }

 

 
先看红色代码,getCommonNetworkFetchToEncodedMemorySequence它也是返回一个Producer(可粗略看)
 
  /**
   * multiplex -> encoded cache -> disk cache -> (webp transcode) -> network fetch.
   */
  private synchronized Producer<EncodedImage> getCommonNetworkFetchToEncodedMemorySequence() {
    if (mCommonNetworkFetchToEncodedMemorySequence == null) {
      Producer<EncodedImage> inputProducer =
              newEncodedCacheMultiplexToTranscodeSequence(
                      mProducerFactory.newNetworkFetchProducer(mNetworkFetcher));
      mCommonNetworkFetchToEncodedMemorySequence =
              ProducerFactory.newAddImageTransformMetaDataProducer(inputProducer);

      if (mResizeAndRotateEnabledForNetwork && !mDownsampleEnabled) {
        mCommonNetworkFetchToEncodedMemorySequence =
                mProducerFactory.newResizeAndRotateProducer(
                        mCommonNetworkFetchToEncodedMemorySequence);
      }
    }
    return mCommonNetworkFetchToEncodedMemorySequence;
  }

 

 
再看,newEncodedCacheMultiplexToTranscodeSequence它也是返回一个Producer(可粗略看)
 
 
  /**
   * encoded cache multiplex -> encoded cache -> (disk cache) -> (webp transcode)
   * @param inputProducer producer providing the input to the transcode
   * @return encoded cache multiplex to webp transcode sequence
   */
  private Producer<EncodedImage> newEncodedCacheMultiplexToTranscodeSequence(
          Producer<EncodedImage> inputProducer) {
    if (Build.VERSION.SDK_INT < Build.VERSION_CODES.JELLY_BEAN_MR2) {
      inputProducer = mProducerFactory.newWebpTranscodeProducer(inputProducer);
    }
    inputProducer = mProducerFactory.newDiskCacheProducer(inputProducer);
    EncodedMemoryCacheProducer encodedMemoryCacheProducer =
            mProducerFactory.newEncodedMemoryCacheProducer(inputProducer);
    return mProducerFactory.newEncodedCacheKeyMultiplexProducer(encodedMemoryCacheProducer);
  }

 

 
选其中一个红色函数看,newDiskCacheProducer,它也是返回一个Producer(可粗略看)
 
  public DiskCacheProducer newDiskCacheProducer(
          Producer<EncodedImage> inputProducer) {
    return new DiskCacheProducer(
            mDefaultBufferedDiskCache,
            mSmallImageBufferedDiskCache,
            mCacheKeyFactory,
            inputProducer);
  }

 

 
好了,到此为止(列出的函数足够多了,晕~~~)
 
其实上面,一连串几个函数,如果有细心的留意,它们有一个特点,就是,每一个函数)都以 (上一个函数)产生的Producer作为参数进行传递
 
 
这样的设计,是不是有似曾相识的感觉,看下面的代码应该就能够了解得更深:
 
FileInputStream fileInputStream = new FileInputStream("/test.txt");
 
InputStreamReader inputStreamReader = new InputStreamReader(fileInputStream);
 
BufferedReader bufferedReader = new BufferedReader(inputSteamReader);
 
很熟悉了吧,可以把sequence Producer就看成是上面这样的一个逻辑~~~
 
那么这样做的作用是什么?我们选一个简单Producer来分析,就以DiskCacheProducer为例(留意代码绿色注释的描述)
 
 public DiskCacheProducer(
          BufferedDiskCache defaultBufferedDiskCache,
          BufferedDiskCache smallImageBufferedDiskCache,
          CacheKeyFactory cacheKeyFactory,
          Producer<EncodedImage> inputProducer) {
    mDefaultBufferedDiskCache = defaultBufferedDiskCache;
    mSmallImageBufferedDiskCache = smallImageBufferedDiskCache;
    mCacheKeyFactory = cacheKeyFactory;
    mInputProducer = inputProducer;
  }

  public void produceResults(
          final Consumer<EncodedImage> consumer,
          final ProducerContext producerContext) {
    ImageRequest imageRequest = producerContext.getImageRequest();
//如果diskcache disabled的话,那么直接执行maybeStartInputProducer
    if (!imageRequest.isDiskCacheEnabled()) {
      maybeStartInputProducer(consumer, consumer, producerContext);
      return;
    }

    final ProducerListener listener = producerContext.getListener();
    final String requestId = producerContext.getId();
    listener.onProducerStart(requestId, PRODUCER_NAME);

    final CacheKey cacheKey = mCacheKeyFactory.getEncodedCacheKey(imageRequest);
    final BufferedDiskCache cache =
            imageRequest.getImageType() == ImageRequest.ImageType.SMALL
                    ? mSmallImageBufferedDiskCache
                    : mDefaultBufferedDiskCache;
    Continuation<EncodedImage, Void> continuation = new Continuation<EncodedImage, Void>() {
      //回调
      @Override
      public Void then(Task<EncodedImage> task)
              throws Exception {
        //根据task是canceled,fault等状态决定如何执行
        if (task.isCancelled() ||
                (task.isFaulted() && task.getError() instanceof CancellationException)) {
          listener.onProducerFinishWithCancellation(requestId, PRODUCER_NAME, null);
          consumer.onCancellation();
        } else if (task.isFaulted()) {
          listener.onProducerFinishWithFailure(requestId, PRODUCER_NAME, task.getError(), null);
          //出错了,就调用maybeStartInputProducer
          maybeStartInputProducer(
                  consumer,
                  new DiskCacheConsumer(consumer, cache, cacheKey),
                  producerContext);
        } else {
          EncodedImage cachedReference = task.getResult();
          if (cachedReference != null) {
            listener.onProducerFinishWithSuccess(
                    requestId,
                    PRODUCER_NAME,
                    getExtraMap(listener, requestId, true));
            consumer.onProgressUpdate(1);
            consumer.onNewResult(cachedReference, true);
            cachedReference.close();
          } else {
            //没有结果,就调用maybeStartInputProducer
            listener.onProducerFinishWithSuccess(
                    requestId,
                    PRODUCER_NAME,
                    getExtraMap(listener, requestId, false));
            maybeStartInputProducer(
                    consumer,
                    new DiskCacheConsumer(consumer, cache, cacheKey),
                    producerContext);
          }
        }
        return null;
      }
    };

    AtomicBoolean isCancelled = new AtomicBoolean(false);
    final Task<EncodedImage> diskCacheLookupTask =
            cache.get(cacheKey, isCancelled);
//执行task,task其实就是从缓存中取结果,执行后,前面的continuation就会被回调
    diskCacheLookupTask.continueWith(continuation);
    subscribeTaskForRequestCancellation(isCancelled, producerContext);
  }

  //调用mInputProducer的produceResults 
  private void maybeStartInputProducer(
          Consumer<EncodedImage> consumerOfDiskCacheProducer,
          Consumer<EncodedImage> consumerOfInputProducer,
          ProducerContext producerContext) {
    if (producerContext.getLowestPermittedRequestLevel().getValue() >=
            ImageRequest.RequestLevel.DISK_CACHE.getValue()) {
      consumerOfDiskCacheProducer.onNewResult(null, true);
      return;
    }

    mInputProducer.produceResults(consumerOfInputProducer, producerContext);
  }

 

 
从前面知道,当开始拉取图片的时候,Producer#produceResult开始执行,注释标出了关键的步骤,从这些步骤可以看出,其实DiskCacheProducer拉取图片时,做的任务大概就是:先看Diskcache中是否有缓存的图片,如果有,就直接返回缓存,如果没有,就用inputProducer来处理
 
然后,inputProducer处理完结果会怎样呢?它处理的结果会在consumer中接收到,上面的例子代码对应的就是DiskCacheConsumer(留意绿色注释)
 
  /**
   * Consumer that consumes results from next producer in the sequence.
   *
   * <p>The consumer puts the last result received into disk cache, and passes all results (success
   * or failure) down to the next consumer.
   */
  private class DiskCacheConsumer extends DelegatingConsumer<EncodedImage, EncodedImage> {

    private final BufferedDiskCache mCache;
    private final CacheKey mCacheKey;

    private DiskCacheConsumer(
            final Consumer<EncodedImage> consumer,
            final BufferedDiskCache cache,
            final CacheKey cacheKey) {
      super(consumer);
      mCache = cache;
      mCacheKey = cacheKey;
    }
    //inputProducer的结果会从这里返回,即newResult
    @Override
    public void onNewResultImpl(EncodedImage newResult, boolean isLast) {
      //返回的结果加入cache中
      if (newResult != null && isLast) {
        mCache.put(mCacheKey, newResult);
      }
      //回调上一层procducer传进来的consumer
      getConsumer().onNewResult(newResult, isLast);
    }
  }

 

 
到这里,应该就大概明白这个sequence Producer的作用了,所谓sequence Producer,其实就是一层层的Producer不断的嵌套连接起来,完成同一个任务,而每一个Producer都相互独立,完成各自任务;同时,Producer间产生的结果,也会相互传递,互为表里。可以称其为“Producer链”,但是“Producer链”本身被抽象成一个Producer,那么对于上层来看,这样一个复杂的处理逻辑就被隐藏起来了,变得更加容易理解。
 
sequence Producer功能极其强大,不同的Producer的组合,产生了很多不同的效果,对于代码的扩展性,可复用性和灵活性都有很大好处。
 
例如,MultiplexProducer
 
注释:
/**
* Producer for combining multiple identical requests into a single request.
*
* <p>Requests using the same key will be combined into a single request. This request is only
* cancelled when all underlying requests are cancelled, and returns values to all underlying
* consumers. If the request has already return one or more results but has not finished, then
* any requests with the same key will have the most recent result returned to them immediately.
*
* @param <K> type of the key
* @param <T> type of the closeable reference result that is returned to this producer
*/
@ThreadSafe
public abstract class MultiplexProducer<K, T extends Closeable> implements Producer<T>
 

 

理解为,多路复用Producer(什么鬼东西?),其实就是将相同的任务合并为一个,例如相同url的重复请求,如何做到的,关键代码(主要看注释):
 
  @Override
  public void produceResults(Consumer<T> consumer, ProducerContext context) {
    K key = getKey(context);
    Multiplexer multiplexer;
    boolean createdNewMultiplexer;
// We do want to limit scope of this lock to guard only accesses to mMultiplexers map.
// However what we would like to do here is to atomically lookup mMultiplexers, add new
// consumer to consumers set associated with the map's entry and call consumer's callback with
// last intermediate result. We should not do all of those things under this lock.
    do {
      createdNewMultiplexer = false;
      synchronized (this) {
        //根据key获得多路复用器,当缓存没有的时候,才create一个,不然直接忽略
        multiplexer = getExistingMultiplexer(key);
        if (multiplexer == null) {
          multiplexer = createAndPutNewMultiplexer(key);
          createdNewMultiplexer = true;
        }
      }
// addNewConsumer may call consumer's onNewResult method immediately. For this reason
// we release "this" lock. If multiplexer is removed from mMultiplexers in the meantime,
// which is not very probable, then addNewConsumer will fail and we will be able to retry.
    } while (!multiplexer.addNewConsumer(consumer, context));
    //如果前面没有创建,也就是存在缓存的多路复用器,那么就不会调用startInputProducerIfHasAttachedConsumers,然后inputProducer就不起作用了,这样,就起到合并请求的作用

    if (createdNewMultiplexer) {
      multiplexer.startInputProducerIfHasAttachedConsumers();
    }
  }

 

 
不同的功能Producer还有很多,例如对图片进行resize和rotate的ResizeAndRotateProducer, 异步执行任务的ThreadHandoffProducer等等,如此灵活的实现,得益于sequence Factory这种设计。
 
总结
 
ImagePipeline的核心Producer,通过sequence的形式,很好的串联了整个图片网络读取,缓存,bitmap处理等流程,通过优秀的设计,保证的代码高扩展性高可复用性高灵活性
 
这种设计刚好对应就是“pipeline”这个词的含义,就如现代的pipelined CPU一样,把对指令的处理,拆分成多个stage,同时输入输出相互依赖和协作,共同完成一个任务。
 
~~~文卒~~~

posted on 2016-01-12 23:19  wacao  阅读(1810)  评论(0编辑  收藏  举报

导航