书接上回 《势流理论笔记:01 势流理论基础》
直接法与间接法
直接法
顾名思义直接求解方程组。。。。
\[\begin{equation}
\begin{aligned}
c(P)\cdot \phi(P)&=-\frac{1}{4\pi}\iint _{S}\left[\phi(Q)\frac{\partial G(P,Q)}{\partial n(P)}-G(P,Q)\frac{\partial \phi(Q)}{\partial n(P)} \right]\text d S(Q)\\
c(P)&=
\begin{cases}
1,&P\in\tau\\
0.5\quad or \quad (0,1) ,&P\in S\\
0,&P\notin\tau+S
\end{cases}
\end{aligned}
\end{equation}
\]
式中:\(c(P)\)为固体角。
对于存在\(N\)个面元的物体
\[\begin{align}
c(P_i)\cdot \phi(P_i)&=-\frac{1}{4\pi}\sum _{j=1}^{N}\left[\phi(Q_j)\frac{\partial G(P_i,Q_j)}{\partial n(P_i)}-G(P_i,Q_j)\frac{\partial \phi(Q_j)}{\partial n(P_i)} \right]\text d S(Q_j) & i,j\in[1,N]
\end{align}
\]
\[\begin{align}
c(P_i)\cdot \phi(P_i)&=
-\frac{1}{4\pi}
\left(
\sum _{j=1}^{N}\left[\phi(Q_j)\frac{\partial G(P_i,Q_j)}{\partial n(P_i)}\right]\text d S(Q_j)-
\sum _{j=1}^{N}\left[G(P_i,Q_j)\frac{\partial \phi(Q_j)}{\partial n(P_i)} \right]\text d S(Q_j)
\right ) & i,j\in[1,N]
\end{align}
\]
写成矩阵形式
\[\begin{align}
[\boldsymbol c]\cdot[\boldsymbol \phi]&=
-\frac{1}{4\pi}\left( [\boldsymbol H]\cdot [\boldsymbol \phi]-
[\boldsymbol M]\cdot [\boldsymbol {\frac{\partial \phi}{\partial n}]}
\right)\\
\left(4\pi[\boldsymbol c]+[\boldsymbol H]\right)\cdot[\boldsymbol \phi]&=
[\boldsymbol M]\cdot [\boldsymbol {\frac{\partial \phi}{\partial n}]}
\end{align}
\]
式中:
\[\begin{align}
[\boldsymbol c]=
\begin{bmatrix}
c(P_1)&0&\cdots&0\\
0&c(P_2)&\cdots&0\\
\vdots&\vdots&\ddots&\vdots&\\
0&0&\cdots&c(P_n)
\end{bmatrix}
,
[\boldsymbol \phi]=
\begin{bmatrix}
\phi(P_1)\\\phi(P_2)\\\vdots\\\phi(P_n)\\
\end{bmatrix}
,
\left[\boldsymbol {\frac{\partial \phi}{\partial n}}\right]=
\begin{bmatrix}
\frac{\partial\phi(P_1)}{\partial n(P_1)}\\
\frac{\partial\phi(P_2)}{\partial n(P_2)}\\\vdots\\
\frac{\partial\phi(P_n)}{\partial n(P_n)}\\
\end{bmatrix}
\end{align}
\]
\[[\boldsymbol H]=\begin{bmatrix}
\frac{\partial G(P_1,P_1)}{\partial n(P_1)}&\frac{\partial G(P_1,P_2)}{\partial n(P_1)}&\cdots&\frac{\partial G(P_1,P_n)}{\partial n(P_1)}\\
\frac{\partial G(P_2,P_1)}{\partial n(P_2)}&\frac{\partial G(P_2,P_2)}{\partial n(P_2)}&\cdots&\frac{\partial G(P_2,P_n)}{\partial n(P_2)}\\
\vdots&\vdots&\ddots &\vdots\\
\frac{\partial G(P_n,P_1)}{\partial n(P_n)}&\frac{\partial G(P_n,P_2)}{\partial n(P_n)}&\cdots&\frac{\partial G(P_n,P_n)}{\partial n(P_n)}\\
\end{bmatrix}
,
[\boldsymbol M]=\begin{bmatrix}
G(P_1,P_1)& G(P_1,P_2)&\cdots&G(P_1,P_n)\\
G(P_2,P_1)& G(P_2,P_2)&\cdots&G(P_2,P_n)\\
\vdots&\vdots&\ddots &\vdots\\
G(P_n,P_1)& G(P_n,P_2)&\cdots&G(P_n,P_n)\\
\end{bmatrix}
\]
可以发现,系数矩阵\(H,M\)独立于物理量,只与网格划分相关,可以利用\(Hess-Smith\)或者其他积分方法计算系数矩阵\([\boldsymbol H]\)与\([\boldsymbol M]\),Hess-Smith方法式一种简单且有效的计算系数矩阵的方法,下一节介绍。
间接法
单层势与双层势
单层势和双层势可以被分别称为源分布和偶分布。现考虑一外部流动问题。有一物体处于流场中,物面记为\(S\),外部流域记为\(\tau_e\),物面单位内法向\(\boldsymbol n_i\)(指向流域内),外法向为\(\boldsymbol n_e\),流场中速度势为\(\phi_e\),有格林第三公式可以写作
\[\begin{align}
\iint _{S}\left[\phi_e\frac{\partial G}{\partial n_e}-G\frac{\partial \phi_e}{\partial n_e} \right]\text d S=
\begin{cases}
-4\pi \phi_e(x,y,z),&P \in \tau_e \\
-2\pi \phi_e(x,y,z),&P \in S \\
\qquad0,&P\notin \tau_e+S
\end{cases}
\end{align}
\]
在物体内部虚构出一个流场,记为\(\tau_i\),边界面上的单位法向量为\(n_i\),物体内部虚拟流场可以记作\(\phi_i\),
\[\begin{align}
\iint _{S}\left[\phi_i\frac{\partial G}{\partial n_i}-G\frac{\partial \phi_i}{\partial n_i} \right]\text d S=
\begin{cases}
-4\pi \phi_i(x,y,z),&P \in \tau_i \\
-2\pi \phi_i(x,y,z),&P \in S \\
\qquad0,&P\notin \tau_i+S
\end{cases}
\end{align}
\]
将两者积分区域统一,可以写作
\[\begin{align}
\iint _{S}\left[\phi_i\frac{\partial G}{\partial n_e}-G\frac{\partial \phi_i}{\partial n_e} \right]\text d S=
\begin{cases}
\qquad 0,&P \in \tau_e \\
2\pi \phi_i(x,y,z),&P \in S \\
4\pi \phi_i(x,y,z),&P\notin \tau_e+S
\end{cases}
\end{align}
\]
(29)-(27)得到
\[\begin{align}
\iint _{S}\left[\left(\phi_i-\phi_e\right)\frac{\partial G}{\partial n_e}-G \left(\frac{\partial \phi_i}{\partial n_e}-\frac{\partial \phi_e}{\partial n_e}\right )\right]\text d S=
\begin{cases}
4\pi \phi_e,&P \in \tau_e \\
2\pi (\phi_i+\phi_e),&P \in S \\
4\pi \phi_i,&P\notin \tau_e+S
\end{cases}
\end{align}
\]
这种方法在数学上称作”开拓“,内域的\(\tau_i\)是虚构的,自然带有某种任意性。
单层势
若令在\(S\)上有\(\phi_i=\phi_e\),并记\(\frac{\partial \phi_e}{\partial n_e}-\frac{\partial \phi_i}{\partial n_e}=\sigma(Q)\),则上式变为
\[\begin{align}
\frac{1}{4\pi}\iint _{S}\sigma(Q)G(P,Q)\text d S=
\begin{cases}
\phi_e,&P \in \tau_e \\
\phi_S,&P \in S \\
\phi_i,&P\notin \tau_e+S
\end{cases}
\end{align}
\]
上式左端为参数\(P\)的积分,它相当于在边界面\(S\)上密度为\(\sigma(Q)\)源分布在场内某点\(P\)引起的速度势,称为单层势。这样的势函数在边界\(S\)上连续的,但是法相导数不连续。正式由于其法向导数的阶跃构成了源的强度分布函数密度\(\sigma(Q)\)。因此,若在表面\(S\)上分布源点,内外域的势函数都已经确定,边界上的势函数就是势本身,以上式子可以进一步化简为
\[\begin{align}
\phi(P)=\frac{1}{4\pi}\iint _{S}\sigma(Q)G(P,Q)\text d S
\end{align}
\]
双层势
若在边界面上假设,\(\frac{\partial \phi_e}{\partial n_e}=\frac{\partial \phi_i}{\partial n_e}\),且记\(m=\phi_i-\phi_e\)。
边界积分方程
物面\(S\)上可以分源或偶,可以确定整个流场的速度势。
Dirichlet边界条件
若给出物面边界上的势函数,则可以利用双层势来求解
Neumann边界条件
给出边界上势函数的法向导数值\(\frac{\partial \phi_e}{\partial n_e}\),通常使用单层势来求解,在\(P\in\tau_e\)时有
\[\begin{align}
\phi_e(P)=\frac{1}{4\pi}\iint _{S}\sigma(Q)G(P,Q)\text d S
\end{align}
\]
对法向\(\boldsymbol n_e\)求导,得到
\[\begin{equation}
\begin{aligned}
\frac{\partial\phi_e(P)}{\partial n_e(P)}&=
\frac{1}{4\pi}\iint _{S}\sigma(Q)\frac{\partial{G(P,Q)}}{\partial n_e(P)}\text d S\\
\frac{1}{2}\left(\frac{\partial\phi_i(P)}{\partial n_e(P)}+\frac{\partial\phi_e(P)}{\partial n_e(P)} \right)&=\frac{1}{4\pi}\iint _{S}\sigma(Q)\frac{\partial{G(P,Q)}}{\partial n_e(P)}\text d S\\
\frac{1}{2}\left(-\sigma(P)+2 \frac{\partial\phi_e(P)}{\partial n_e(P)}\right)&=
\frac{1}{4\pi}\iint _{S}\sigma(Q)\frac{\partial{G(P,Q)}}{\partial n_e(P)}\text d S\\
\end{aligned}
\end{equation}
\]
最后有
\[\begin{align}
\frac{1}{2}\sigma(P)+\frac{1}{4\pi}\iint _{S}\sigma(Q)\frac{\partial{G(P,Q)}}{\partial n_e(P)}\text d S=
\frac{\partial\phi_e(P)}{\partial n_e(P)}
\end{align}
\]
写成矩阵形式:
\[\begin{align}
\frac{1}{2}\sigma(P_i)+\frac{1}{4\pi}\iint _{S}\sigma(Q_j)\frac{\partial{G(P_i,Q_j)}}{\partial n_e(P_i)}\text d S(Q_j)&=
\frac{\partial\phi_e(P_i)}{\partial n_e(P_i)}\\
\frac{1}{2}[\boldsymbol I]\cdot[\boldsymbol\sigma]+\frac{1}{4\pi}[\boldsymbol {Vz}]\cdot[\boldsymbol\sigma]&=[\boldsymbol {\frac{\partial \phi}{\partial n}}]\\
\left(\frac{1}{2}[\boldsymbol I]+\frac{1}{4\pi}[\boldsymbol {Vz}]\right)\cdot[\boldsymbol\sigma]&=[\boldsymbol {\frac{\partial \phi}{\partial n}}]
\end{align}
\]
式中:
\[[\boldsymbol {Vz}]=\begin{bmatrix}
\frac{\partial G(P_1,P_1)}{\partial n(P_1)}&\frac{\partial G(P_1,P_2)}{\partial n(P_1)}&\cdots&\frac{\partial G(P_1,P_n)}{\partial n(P_1)}\\
\frac{\partial G(P_2,P_1)}{\partial n(P_2)}&\frac{\partial G(P_2,P_2)}{\partial n(P_2)}&\cdots&\frac{\partial G(P_2,P_n)}{\partial n(P_2)}\\
\vdots&\vdots&\ddots &\vdots\\
\frac{\partial G(P_n,P_1)}{\partial n(P_n)}&\frac{\partial G(P_n,P_2)}{\partial n(P_n)}&\cdots&\frac{\partial G(P_n,P_n)}{\partial n(P_n)}\\
\end{bmatrix}
,
[\boldsymbol\sigma]=
\begin{bmatrix}
\sigma(P_1)\\\sigma(P_2)\\\vdots\\\sigma(P_n)
\end{bmatrix},
\left[\boldsymbol {\frac{\partial \phi}{\partial n}}\right]=
\begin{bmatrix}
\frac{\partial\phi(P_1)}{\partial n(P_1)}\\
\frac{\partial\phi(P_2)}{\partial n(P_2)}\\\vdots\\
\frac{\partial\phi(P_n)}{\partial n(P_n)}\\
\end{bmatrix}
\]
速度势与边界速度的求法
\[\begin{align}
\phi_e(P_i)&=\frac{1}{4\pi}\iint _{S}\sigma(Q_j)G(P_i,Q_j)\text d S(Q_j)\\
\begin{bmatrix}
\phi(P_1)\\\phi(P_2)\\\vdots\\\phi(P_n)
\end{bmatrix}&=\frac{1}{4\pi}\cdot
\begin{bmatrix}
G(P_1,P_1)& G(P_1,P_2)&\cdots&G(P_1,P_n)\\
G(P_2,P_1)& G(P_2,P_2)&\cdots&G(P_2,P_n)\\
\vdots&\vdots&\ddots &\vdots\\
G(P_n,P_1)& G(P_n,P_2)&\cdots&G(P_n,P_n)\\
\end{bmatrix}\cdot
\begin{bmatrix}
\sigma(P_1)\\\sigma(P_2)\\\vdots\\\sigma(P_n)
\end{bmatrix}
\end{align}
\]