期权定价之希腊值推导(Derivation of Greeks in European Option Pricing)

Derivation of Greeks in European Option Pricing

The European Vanilla call and put options with dividend payments have the values in formulas with:


ct=SteyτN(d1)KerτN(d2)pt=KerτN(d2)SteyτN(d1)


where ct, pt represent the values of European call option and European put option respectively, y is the continuous rate of dividend payment, τ represent the time to the exercise date (i.e. τ=Tt), N is the cumulative distribution function of standard normal distribution N(0,1), such that:


N(x)=fX(x)=12πex22,XN(0,1)


St is the price of the underlying asset at time t, K is the strike, and d1, d2 are calculated by:


d1=log(StK)+(ry+σ22)τστd2=d1στ=log(StK)+(ryσ22)τστ


where σ is the volatility of the prices of the underlying asset.




Derivation of Delta (Δ)

Delta (Δ) in option pricing usually refers to the partial derivative of option value to the price of underlying asset, which means:


Δ=VSt


where V is the option value.


Therefore, the delta for European vanilla call option is derived by:


Δcall=ctSt=St(SteyτN(d1)KerτN(d2))


It should be noticed that, it is not correct to simply conclude this partial derivative as eyτN(d1) (although the answer is correct) by reducing the St in the first component, because N(d1) and N(d2) are both functions of St, and therefore the chain rule should be applied here, we continue the derivation as:


Δcall=St(SteyτN(d1)KerτN(d2))=eyτN(d1)+SteyτN(d1)d1StKerτN(d2)d2St


where:


d1St=St[log(StK)+(ry+σ22)τστ]=1στKSt1K=1σStτ


and:


d2St=St(d1στ)=d1St=1σStτ


and:


N(d1)=12πed122


and:


N(d2)=12πed222=12πe(d1στ)22=12πed122d1στ+σ2τ2=12πed122ed1στeσ2τ2


where the second exponential component can be simplified as:


ed1στ=elog(StK)+(ry+σ22)τστστ=elog(StK)+(ry+σ22)τ=StKe(ry+σ22)τ


Hence N(d2) becomes:


N(d2)=12πed122ed1στeσ2τ2=12πStKe(ry+σ22)τed122eσ2τ2=St2πKe(ry)τed122


So that:


Δcall=eyτN(d1)+SteyτN(d1)d1StKerτN(d2)d2St=eyτN(d1)+Steyτed1222πτσStStKerτe(ry)τed1222πτσStK=eyτN(d1)+eyτed1222πτσeyτed1222πτσ=eyτN(d1)


Therefore, the delta of European call option with dividend payments is derived as above, that is:


Δcall=eyτN(d1)


The delta of European put option with dividend payments can be derived in a similar way.




Derivation of Gamma (Γ)

Gamma (Γ) is the second partial derivative of the European option with respect to the price of underlying asset, that is:


Γ=2VSt2


Taking European call option with dividend payments as an example, since the delta:


Δcall=eyτN(d1)


The gamma would therefore be:


Γ=St(eyτN(d1))=eyτN(d1)d1St=eyτN(d1)σStτ


That is:


Γ=eyτN(d1)σStτ




Derivation of Theta (Θ)

Theta (Θ) is the partial derivative of the value of European option with respect to the time t (NOT the time to maturity τ !), that is:


Θ=Vt


In the following steps, I will replace the time to maturity τ by its original form Tt, in order to show a much more clear version of chain rule. Here, I will write down each component of the chain, and make all of them up together, due to the sophistication of chain equation.


The partial derivative of d1 with respect to time t is:


d1t=t[log(StK)+(ry+σ22)(Tt)σTt]=(ry+σ22)σTt+σ2Tt(ry+σ22)=σ2(ry+σ22)Tt


The partial derivative of d2 with respect to time t is:


d2t=t(d1σTt)=d1tt(σTt)=σ2(ry+σ22)Tt+σ2(Tt)12


Taking European call option with dividend payments as an example, the theta would be:


Θcall=ctt=t[SteyτN(d1)KerτN(d2)] =yStey(Tt)N(d1)+Stey(Tt)N(d1)(σ2(ry+σ22)Tt)rKer(Tt)N(d2)Ker(Tt)N(d2)(σ2(ry+σ22)Tt +σ2(Tt)12) =yStey(Tt)N(d1)σ2St(ry+σ22)Ttey(Tt)N(d1)rKer(Tt)N(d2)+σ2K(ry+σ22)Tter(Tt)N(d2)σ2K(Tt)12er(Tt)N(d2) =yStey(Tt)N(d1)rKer(Tt)N(d2)σ2St(ry+σ22)Tt ey(Tt)12πed122+σ2K(ry+σ22)Tt er(Tt)12πe(d1σTt)22σ2K(Tt)12er(Tt)12πe(d1σTt)22 =yStey(Tt)N(d1)rKer(Tt)N(d2)σSt22π(ry+σ22)Tt ey(Tt)ed122+σK22π(ry+σ22)Tter(Tt)ed122σd1Tt+σ2(Tt)2σK22π(Tt)12er(Tt)ed122σd1Tt+σ2(Tt)2 =yStey(Tt)N(d1)rKer(Tt)N(d2)σSt22π(ry+σ22)Tt ey(Tt)ed122+σK22π(ry+σ22)Tter(Tt)StKed122e(ry)(Tt)σK22π(Tt)12er(Tt)StKed122e(ry)(Tt) =yStey(Tt)N(d1)rKer(Tt)N(d2)σSt22π(Tt)12ed122ey(Tt)=yStey(Tt)N(d1)rKer(Tt)N(d2)σStey(Tt)N(d1)2Tt=ySteyτN(d1)rKerτN(d2)σSteyτN(d1)2τ


That is:

Θcall=ySteyτN(d1)rKerτN(d2)σSteyτN(d1)2τ




Derivation of Vega (ν)

Vega (ν) is the partial derivative of European option value with respect to the volatility σ, that is:


ν=Vσ


Taking European call option with dividend payments as an example, due to the complication of applying the chain rule, I will firstly derive the partial derivative of d1 and d2 with respect to σ respectively, thus:


d1σ=σ2ττ(log(StK)+(ry+σ22)τ)τσ2τ=σ2τ(log(StK)+(ry+σ22)τ)σ2


and:


d2σ=d1στ=log(StK)+(ry+σ22)τσ2


Therefore, by the chain rule:


νcall=ctσ=SteyτN(d1)d1σKerτN(d2)d2σ =Steyτ12πed122σ2τlog(StK)(ry+σ22)τσ2+Kerτ12πed222log(StK)+(ry+σ22)τσ2 =Steyτed122σ2τlog(StK)(ry+σ22)τ2πσ2+Kerτed122eσ2τ2StKe(ry+σ22)τlog(StK)+(ry+σ22)τ2πσ2 =Steyτed122σ2τ2πσ2=SteyττN(d1)


That is:


νcall=SteyττN(d1)




Derivation of Rho (ρ)

Rho (ρ) is defined as the partial derivative of the value of the European option with respect to the risk free interest rate (r).


That is:


ρ=Vr


Taking European call option with dividend payments as an example, we firstly derive the partial derivatives of d1 and d2 with respect to r, that is:


d1r=τσ


and:


d2r=r(d1στ)=τσ


Therefore, we have:


ctr=SteyτN(d1)d1r+τKN(d2)KerτN(d2)d2r=τσ(SteyτN(d1)KerτN(d2))+τKN(d2)=τ2πσ(Steyτed122Kerτed222)+τKN(d2)=τKN(d2)


That is:


ρcall=τKN(d2)

posted @   车天健  阅读(412)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 【译】Visual Studio 中新的强大生产力特性
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 【设计模式】告别冗长if-else语句:使用策略模式优化代码结构
点击右上角即可分享
微信分享提示