Bootcamp
略去,详见测度论专栏中的文章
Expectations
令 X X 为 ( Ω , F , P ) ( Ω , F , P ) 上的随机变量,E [ X ] E [ X ] 为其期望。一些期望的特殊表示如下:
X : Ω → R X : Ω → R 为简单函数,即,X X 在有限集 { x 1 , … , x n } { x 1 , … , x n } 中取值,则:
E [ X ] := n ∑ i = 1 x i P ( X = x i ) E [ X ] := ∑ i = 1 n x i P ( X = x i )
X ≥ 0 X ≥ 0 almost surely,则:
E [ X ] := sup { E [ Y ] : Y is simple, 0 ≤ Y ≤ X almost surely. } E [ X ] := sup { E [ Y ] : Y is simple, 0 ≤ Y ≤ X almost surely. }
注意,非负随机变量的期望可能为 ∞ ∞ 。
E [ X + ] E [ X + ] 或 E [ X − ] E [ X − ] 其中之一是有限的,则:
E [ X ] := E [ X + ] − E [ X − ] E [ X ] := E [ X + ] − E [ X − ]
X X 为一个向量,且 E [ | X | ] < ∞ E [ | X | ] < ∞ ,则:
E [ ( X 1 , … , X d ) ] := ( E [ X 1 ] , … , E [ X d ] ) E [ ( X 1 , … , X d ) ] := ( E [ X 1 ] , … , E [ X d ] )
Jensen's Inequality (琴生不等式)
令 X X 为一个随机变量,g : R → R g : R → R 为一个凸函数。那么当 X X 的期望存在时:
E [ g ( X ) ] ≥ g ( E [ X ] ) E [ g ( X ) ] ≥ g ( E [ X ] )
若 g g 为严格凸函数,则以上不等式可随之写为严格大于的形式(除非 X X 取常数值)。
注(Convex function):
函数 f : X → R f : X → R 称作一个凸函数,如果:
∀ t ∈ [ 0 , 1 ] : ∀ x 1 , x 2 ∈ X : f ( t x 1 + ( 1 − t ) x 2 ) ≤ t ⋅ f ( t x 1 ) + ( 1 − t ) ⋅ f ( x 2 ) ∀ t ∈ [ 0 , 1 ] : ∀ x 1 , x 2 ∈ X : f ( t x 1 + ( 1 − t ) x 2 ) ≤ t ⋅ f ( t x 1 ) + ( 1 − t ) ⋅ f ( x 2 )
Self-Financing Condition
A self-financing strategy is defined as a consumption stream ( c t ) t ≥ 0 ( c t ) t ≥ 0 which follows:
( c t − c t + 1 ) ⋅ P t = 0 for ∀ t ≥ 0 ( c t − c t + 1 ) ⋅ P t = 0 for ∀ t ≥ 0
Numeraire (计价单位)
( η t ) t ≥ 0 ( η t ) t ≥ 0 为 previsible process.
η t ⋅ P t > 0 η t ⋅ P t > 0 almost surely, i.e., P ( η t ⋅ P t > 0 ) = 1 P ( η t ⋅ P t > 0 ) = 1 .
( η t ) t ≥ 0 ( η t ) t ≥ 0 满足 self-financing condition, i.e.,
( η t − η t + 1 ) ⋅ P t = 0 for ∀ t ≥ 0 ( η t − η t + 1 ) ⋅ P t = 0 for ∀ t ≥ 0
这实际上意味着:
η t ⋅ P t = η t + 1 ⋅ P t for ∀ t ≥ 0 η t ⋅ P t = η t + 1 ⋅ P t for ∀ t ≥ 0
注意,以上式子中两侧的 P t P t 不能随手约去,因为等式两边是两个向量的内积运算。
Numeraire Asset
A numeraire asset is an asset with strictly positive price.
若 asset i i 为一个 numeraire asset,那么对于 ∀ t ≥ 0 ∀ t ≥ 0 ,定义 constant portfolio η η :
η j t = { 1 if j = i 0 otherwise η t j = { 1 if j = i 0 otherwise
为一个 numeraire portfolio。
Investment-Consumption Strategy
c 0 = x − H 1 ⋅ P 0 c t = ( H t − H t + 1 ) ⋅ P t for t ≥ 1 c 0 = x − H 1 ⋅ P 0 c t = ( H t − H t + 1 ) ⋅ P t for t ≥ 1
其中 x x 为初始财富。
Terminal Consumption Strategy
c 0 = − H 1 ⋅ P 0 = 0 c t = ( H t − H t + 1 ) ⋅ P t = 0 for 1 ≤ t ≤ T − 1 c T = H T ⋅ P T ≥ 0 and P ( c T > 0 ) > 0 c 0 = − H 1 ⋅ P 0 = 0 c t = ( H t − H t + 1 ) ⋅ P t = 0 for 1 ≤ t ≤ T − 1 c T = H T ⋅ P T ≥ 0 and P ( c T > 0 ) > 0
其中 H H 为 previsible process,non-random T > 0 T > 0 使得以上 holds almost surely。
Pure Investment Strategy
对于 ∀ t ≥ 0 ∀ t ≥ 0 ,每一期持仓 H t H t ,但将每一期的 consumption c t c t 不用于消费,而是用于投资 numeraire portfolio η t η t 。
Theorem. 局部鞅 → → 鞅的充分条件 (local martingales to true martingales: sufficient condition)
令 X X 为一个离散或连续的 local martingale,令过程 ( Y t ) t ≥ 0 ( Y t ) t ≥ 0 满足:
for ∀ s , t , 0 ≤ s ≤ t : | X s | ≤ Y t almost surely for ∀ s , t , 0 ≤ s ≤ t : | X s | ≤ Y t almost surely
若 E [ Y t ] ≤ ∞ , for ∀ t ≥ 0 E [ Y t ] ≤ ∞ , for ∀ t ≥ 0 ,那么 X X 为一个 true martingale。
证明:
由于 ( X t ) t ≤ 0 ( X t ) t ≤ 0 为一个 local martingale,根据定义存在一个 stopping time series (localizing sequence):( τ N ) N ≥ 0 ( τ N ) N ≥ 0 ,满足 lim N → ∞ τ N = ∞ lim N → ∞ τ N = ∞ ,使得对于 ∀ N ≥ 0 ∀ N ≥ 0 ,( X τ N t ) t ≥ 0 = ( X t ∧ τ N ) t ≥ 0 ( X t τ N ) t ≥ 0 = ( X t ∧ τ N ) t ≥ 0 为 true martingale。
首先证明 ( X t ) t ≥ 0 ( X t ) t ≥ 0 可积。对于任意 t ≥ 0 t ≥ 0 ,取任意 T ≥ t T ≥ t ,根据条件:| X t | ≤ Y T | X t | ≤ Y T almost surely。又因为:∀ T ≥ 0 : E [ Y T ] < ∞ ∀ T ≥ 0 : E [ Y T ] < ∞ ,那么:
for ∀ t ≥ 0 : | X t | ≤ Y T ⟹ E [ X t ] ≤ E [ Y T ] < ∞ for ∀ t ≥ 0 : | X t | ≤ Y T ⟹ E [ X t ] ≤ E [ Y T ] < ∞
因此 ( X t ) t ≥ 0 ( X t ) t ≥ 0 integrable。
将 X t ∧ τ N X t ∧ τ N 视作一个下标为 N N 的序列,即:
{ X t ∧ τ N } N ≥ 0 = X t ∧ τ 1 , X t ∧ τ 2 , X t ∧ τ 3 , … { X t ∧ τ N } N ≥ 0 = X t ∧ τ 1 , X t ∧ τ 2 , X t ∧ τ 3 , …
注意到 X t ∧ τ N = X min ( t , τ N ) ⟶ X t X t ∧ τ N = X min ( t , τ N ) ⟶ X t almost surely with N ⟶ ∞ N ⟶ ∞ ,即:
for ∀ t ≥ 0 : ∀ ε > 0 : P ( lim N → ∞ | X t ∧ τ N − X t | > ε ) = 0 for ∀ t ≥ 0 : ∀ ε > 0 : P ( lim N → ∞ | X t ∧ τ N − X t | > ε ) = 0
这是因为 lim N → ∞ τ N = ∞ lim N → ∞ τ N = ∞ ,t ∧ τ N = min ( t , τ N ) t ∧ τ N = min ( t , τ N ) 自然随 N N 增大而收敛于 t t 。
所以对于 ∀ 0 ≤ s ≤ t ∀ 0 ≤ s ≤ t :
E [ X t | F s ] = E [ lim N → ∞ X t ∧ τ N | F s ] = lim N → ∞ E [ X t ∧ τ N | F s ] ( Dominated Convergence Theorem ) = lim N → ∞ X s ∧ τ N ( ∗ ) = X s E [ X t | F s ] = E [ lim N → ∞ X t ∧ τ N | F s ] = lim N → ∞ E [ X t ∧ τ N | F s ] ( Dominated Convergence Theorem ) = lim N → ∞ X s ∧ τ N ( ∗ ) = X s
因此:local martingale ( X t ) t ≥ 0 ( X t ) t ≥ 0 在给定的条件下也为一个 true martingale。
Corollary.
假设 X X 一个 离散 时间 local martingale,使对于 ∀ t ≥ 0 : E [ | X t | ] < ∞ ∀ t ≥ 0 : E [ | X t | ] < ∞ ,那么 X X 是一个 true martingale。
证明:
令 Y t = | X 0 | + | X 1 | + ⋯ + | X t | Y t = | X 0 | + | X 1 | + ⋯ + | X t | 。Trivially:
Y t = | X 0 | + | X 1 | + ⋯ + | X t | ≥ | X s | for ∀ s ∈ { 0 , 1 , … , t } Y t = | X 0 | + | X 1 | + ⋯ + | X t | ≥ | X s | for ∀ s ∈ { 0 , 1 , … , t }
并且由于:∀ t ≥ 0 : E [ | X t | ] < ∞ ∀ t ≥ 0 : E [ | X t | ] < ∞ ,那么:
E [ Y t ] = E [ | X 0 | + | X 1 | + ⋯ + | X t | ] = t ∑ s = 0 E [ | X s | ] < ∞ E [ Y t ] = E [ | X 0 | + | X 1 | + ⋯ + | X t | ] = ∑ s = 0 t E [ | X s | ] < ∞
所以 ( Y t ) t ≥ 0 ( Y t ) t ≥ 0 可积,并且此时 ( X t ) t ≤ 0 ( X t ) t ≤ 0 和 ( Y t ) t ≥ 0 ( Y t ) t ≥ 0 恰满足上述 Sufficient Condition,因此 ( X t ) t ≥ 0 ( X t ) t ≥ 0 为一个 true martingale。
Supermartingale and Submartingale (上鞅与下鞅)
上鞅(Supermartingale)
相关于 filtration { F t } t ≥ 0 { F t } t ≥ 0 的一个 supermartingale(上鞅)是一个 adapted stochastic process ( U t ) t ≥ 0 ( U t ) t ≥ 0 ,满足以下性质:
下鞅(Submartingale)
相关于 filtration { F t } t ≥ 0 { F t } t ≥ 0 的一个 submartingale(下鞅)是一个 adapted stochastic process ( V t ) t ≥ 0 ( V t ) t ≥ 0 ,满足以下性质:
鞅、上鞅、下鞅
A martingale is a stochastic process that is both a supermartingale and a submartingale.
Theorem.
假设 X X 是一个连续或离散时间上的 local martingale。如果 X t ≥ 0 X t ≥ 0 对于 ∀ t ≥ 0 ∀ t ≥ 0 都成立,那么 X X 是一个 supermartingale(上鞅)。
证明:
令 ( τ N ) N ≥ 0 ( τ N ) N ≥ 0 为相关于 local martingale ( X t ) t ≥ 0 ( X t ) t ≥ 0 的 localizing sequence,即:
∀ N ≥ 0 : ( X τ N t ) t ≥ 0 is a true martingale. ∀ N ≥ 0 : ( X t τ N ) t ≥ 0 is a true martingale.
首先证明 ( X t ) t ≥ 0 ( X t ) t ≥ 0 可积。由 Fatou's Lemma :
E [ | X t | ] = E [ X t ] = E [ lim N → ∞ X t ∧ τ N ] = E [ lim inf N → ∞ X t ∧ τ N ] ≤ lim inf N → ∞ E [ X t ∧ τ N ] = lim inf N → ∞ E [ X t ∧ τ N ∣ ∣ F 0 ] = X 0 < ∞ E [ | X t | ] = E [ X t ] = E [ lim N → ∞ X t ∧ τ N ] = E [ lim inf N → ∞ X t ∧ τ N ] ≤ lim inf N → ∞ E [ X t ∧ τ N ] = lim inf N → ∞ E [ X t ∧ τ N | F 0 ] = X 0 < ∞
在条件期望上运用 Fatou's Lemma ,对于 ∀ 0 ≤ s ≤ t : ∀ 0 ≤ s ≤ t :
E [ X t | F s ] = E [ lim N → ∞ X t ∧ τ N ∣ ∣ F s ] = E [ lim inf N → ∞ X t ∧ τ N ∣ ∣ F s ] ≤ lim inf N → ∞ E [ X t ∧ τ N ∣ ∣ F s ] = lim inf N → ∞ X s ∧ τ N = X s E [ X t | F s ] = E [ lim N → ∞ X t ∧ τ N | F s ] = E [ lim inf N → ∞ X t ∧ τ N | F s ] ≤ lim inf N → ∞ E [ X t ∧ τ N | F s ] = lim inf N → ∞ X s ∧ τ N = X s
因此 ( X t ) t ≥ 0 ( X t ) t ≥ 0 为一个 supermartingale(上鞅)。
Corollary.
如果 ( X t ) t ≥ 0 ( X t ) t ≥ 0 是一个离散时间 local martingale,且对于任意 t ≥ 0 t ≥ 0 ,有 X t ≥ 0 X t ≥ 0 almost surely,那么 ( X t ) t ≥ 0 ( X t ) t ≥ 0 是一个 true martingale。
证明:
通过上述 Theorem ,我们有:
E [ | X t | ] = E [ X t ] ≤ X 0 < ∞ E [ | X t | ] = E [ X t ] ≤ X 0 < ∞
由于 X X 是可积的,通过上一条 Corollary 可以得出 ( X t ) t ≥ 0 ( X t ) t ≥ 0 是一个 martingale 的结论。
Theorem.
假设:
X t = X 0 + t ∑ s = 1 K s ( M s − M s − 1 ) X t = X 0 + ∑ s = 1 t K s ( M s − M s − 1 )
其中,K K 是一个 previsible process,M M 是一个 local martingale,X 0 X 0 是一个常数。
如果对于某些非随机的 T > 0 T > 0 ,有:X T ≥ 0 X T ≥ 0 almost surely,那么 ( X t ) 0 ≤ t ≤ T ( X t ) 0 ≤ t ≤ T 是一个 true martingale。
证明:
略。(太长了,以后有机会补上。)
随机贴现因子(Stochastic Discount Factor / Pricing Kernel / State Price Density)
在一个没有股息的市场中,在时刻 s s 和 t t 间(0 ≤ s < t 0 ≤ s < t )的随机贴现因子是一个 adapted positive F t − F t − measurable random variable ρ s , t ρ s , t , 使得:
P s = E [ ρ s , t P t | F s ] P s = E [ ρ s , t P t | F s ]
令 Y Y 为一个 martingale deflator(i.e. ∀ 0 ≤ s < t : E [ Y t P t | F s ] = Y s P s ∀ 0 ≤ s < t : E [ Y t P t | F s ] = Y s P s ),令 ρ s , t = Y t Y s ρ s , t = Y t Y s ,若 ρ s , t P t ρ s , t P t 可积,那么 ρ s , t ρ s , t 为时间 s s 与 t t 间的 pricing kernel。
证明:
对于 positivity,由于 Y Y 为 martingale deflator,则 ∀ t ≥ 0 : Y t > 0 ∀ t ≥ 0 : Y t > 0 ,所以 ρ s , t = Y t Y s > 0 ρ s , t = Y t Y s > 0 ,并且:
E [ ρ s , t P t | F s ] = E [ Y t Y s P t | F s ] = 1 Y s E [ Y t P t | F s ] = 1 Y s ⋅ Y s P s = P s E [ ρ s , t P t | F s ] = E [ Y t Y s P t | F s ] = 1 Y s E [ Y t P t | F s ] = 1 Y s ⋅ Y s P s = P s
因此 ρ s , t ρ s , t 为一个 pricing kernel。
相反地,对于 s ≥ 0 s ≥ 0 ,假设 ρ s , s + 1 ρ s , s + 1 为 时间 s s 与 s + 1 s + 1 间的 pricing kernel,令 Y t = ρ 0 , 1 ρ 1 , 2 … ρ t − 1 , t Y t = ρ 0 , 1 ρ 1 , 2 … ρ t − 1 , t ,且 Y P Y P 可积,那么 Y Y 为一个 martingale deflator。
证明:
对于 ∀ t ≥ 0 ∀ t ≥ 0 ,由于 pricing kernel 为正随机变量,则 Y t = ρ 0 , 1 ρ 1 , 2 … ρ t − 1 , t > 0 Y t = ρ 0 , 1 ρ 1 , 2 … ρ t − 1 , t > 0 ,并且:
E [ Y t + 1 P t + 1 ∣ ∣ F t ] = E [ ρ 0 , 1 ρ 1 , 2 … ρ t − 1 , t ρ t , t + 1 ⋅ P t + 1 ∣ ∣ F t ] = ρ 0 , 1 ρ 1 , 2 … ρ t − 1 , t ⋅ E [ ρ t , t + 1 ⋅ P t + 1 ∣ ∣ F t ] (adaptness) = Y t ⋅ P t (by definition) E [ Y t + 1 P t + 1 | F t ] = E [ ρ 0 , 1 ρ 1 , 2 … ρ t − 1 , t ρ t , t + 1 ⋅ P t + 1 | F t ] = ρ 0 , 1 ρ 1 , 2 … ρ t − 1 , t ⋅ E [ ρ t , t + 1 ⋅ P t + 1 | F t ] (adaptness) = Y t ⋅ P t (by definition)
因此,( Y t ) t ≥ 0 ( Y t ) t ≥ 0 为一个 martingale deflator。
Proposition.
考虑存在一个 numeraire η η 的市场,且令:N t = η t ⋅ P t ∀ t ≥ 0 N t = η t ⋅ P t ∀ t ≥ 0 。令 H H 为一个 investment-consumption strategy,即,H H 的 consumption stream 定义为:
c 0 = x − H 1 ⋅ P 0 c t = ( H t − H t + 1 ) ⋅ P t c 0 = x − H 1 ⋅ P 0 c t = ( H t − H t + 1 ) ⋅ P t
其中 x x 为初始财富。令:
K t = H t + η t t − 1 ∑ s = 0 c s N s K t = H t + η t ∑ s = 0 t − 1 c s N s
那么,K K 为一个 pure-investment strategy from the same initial wealth x x 。
特殊地,当且仅当 K K 为一个 terminal-consumption arbitrage 时,H H 为一个 arbitrage。
证明:
( K t − K t + 1 ) ⋅ P t = ( H t + η t t − 1 ∑ s = 0 c s N s − H t + 1 − η t + 1 t ∑ s = 0 c s N s ) ⋅ P t = ( H t − H t + 1 ) ⋅ P t + ( η t t − 1 ∑ s = 0 c s N s − η t + 1 t ∑ s = 0 c s N s ) ⋅ P t = ( H t − H t + 1 ) ⋅ P t + ( η t t ∑ s = 0 c s N s − η t + 1 t ∑ s = 0 c s N s − η t c t N t ) ⋅ P t = ( H t − H t + 1 ) ⋅ P t + ( ( η t − η t + 1 ) t ∑ s = 0 c s N s − η t c t N t ) ⋅ P t = ( H t − H t + 1 ) ⋅ P t − η t ⋅ P t c t N t + ( η t − η t + 1 ) ⋅ P t t ∑ s = 0 c s N s = ( H t − H t + 1 ) ⋅ P t − η t ⋅ P t c t N t (Investment-consumption strategy) = c t ⋅ P t − N t ⋅ c t N t (By definition) = 0 ( K t − K t + 1 ) ⋅ P t = ( H t + η t ∑ s = 0 t − 1 c s N s − H t + 1 − η t + 1 ∑ s = 0 t c s N s ) ⋅ P t = ( H t − H t + 1 ) ⋅ P t + ( η t ∑ s = 0 t − 1 c s N s − η t + 1 ∑ s = 0 t c s N s ) ⋅ P t = ( H t − H t + 1 ) ⋅ P t + ( η t ∑ s = 0 t c s N s − η t + 1 ∑ s = 0 t c s N s − η t c t N t ) ⋅ P t = ( H t − H t + 1 ) ⋅ P t + ( ( η t − η t + 1 ) ∑ s = 0 t c s N s − η t c t N t ) ⋅ P t = ( H t − H t + 1 ) ⋅ P t − η t ⋅ P t c t N t + ( η t − η t + 1 ) ⋅ P t ∑ s = 0 t c s N s = ( H t − H t + 1 ) ⋅ P t − η t ⋅ P t c t N t (Investment-consumption strategy) = c t ⋅ P t − N t ⋅ c t N t (By definition) = 0
因此,对于 ∀ t ≥ 0 ∀ t ≥ 0 ,有:
( K t − K t + 1 ) ⋅ P t = 0 ( K t − K t + 1 ) ⋅ P t = 0
由假设:( η t ) t ≥ 0 ( η t ) t ≥ 0 为 pure-investment strategy,则 ( K t ) t ≥ 0 ( K t ) t ≥ 0 亦为 pure-investment strategy。
假设对于 non-random T T ,有:c T = H T ⋅ P T c T = H T ⋅ P T ,那么:
K T ⋅ P T = ( H T + η T T − 1 ∑ s = 0 c s N s ) ⋅ P T = H T ⋅ P T + η T ⋅ P T T − 1 ∑ s = 0 c s N s = c T + N T T − 1 ∑ s = 0 c s N s = N T c T N T + N T T − 1 ∑ s = 0 c s N s = N T T ∑ s = 0 c s N s K T ⋅ P T = ( H T + η T ∑ s = 0 T − 1 c s N s ) ⋅ P T = H T ⋅ P T + η T ⋅ P T ∑ s = 0 T − 1 c s N s = c T + N T ∑ s = 0 T − 1 c s N s = N T c T N T + N T ∑ s = 0 T − 1 c s N s = N T ∑ s = 0 T c s N s
⟹ K T ⋅ P T = N T T ∑ s = 0 c s N s ⟹ K T ⋅ P T = N T ∑ s = 0 T c s N s
则:当且仅当 某些 c t ( 0 ≤ t ≤ T ) c t ( 0 ≤ t ≤ T ) 取值为 strictly positive 时, 等式左侧 K T ⋅ P T K T ⋅ P T 为 strictly positive。
令 P P 和 Q Q 为定义在 ( Ω , F ) ( Ω , F ) 上的 equivalent probability measures,令 Radon - Nikodym derivative: Z = d Q d P Z = d Q d P ,令 G ⊂ F G ⊂ F 为一个 σ − σ − field。那么:
E Q [ X ∣ ∣ G ] = E P [ Z X | G ] E P [ Z | G ] E Q [ X | G ] = E P [ Z X | G ] E P [ Z | G ]
证明:
令 Y = E P [ Z X | G ] E P [ Z | G ] Y = E P [ Z X | G ] E P [ Z | G ] ,欲证:E Q [ X ∣ ∣ G ] = Y E Q [ X | G ] = Y ,这等价于:
对于 ∀ G ∈ G ∀ G ∈ G :
E Q [ X ∣ ∣ G ] ⋅ I G = Y ⋅ I G ⟺ E Q [ E Q [ X ∣ ∣ G ] ⋅ I G ] = E Q [ Y ⋅ I G ] ⟺ E Q [ E Q [ X ⋅ I G ∣ ∣ G ] ] = E Q [ Y ⋅ I G ] ⟺ E Q [ X ⋅ I G ] = E Q [ Y ⋅ I G ] ⟺ ∫ G X d Q = ∫ G Y d Q E Q [ X | G ] ⋅ I G = Y ⋅ I G ⟺ E Q [ E Q [ X | G ] ⋅ I G ] = E Q [ Y ⋅ I G ] ⟺ E Q [ E Q [ X ⋅ I G | G ] ] = E Q [ Y ⋅ I G ] ⟺ E Q [ X ⋅ I G ] = E Q [ Y ⋅ I G ] ⟺ ∫ G X d Q = ∫ G Y d Q
由 Radon-Nikodym derivative Z = d Q d P ⟹ d Q = Z ⋅ d P Z = d Q d P ⟹ d Q = Z ⋅ d P :
∫ G X d Q = ∫ G Y d Q ⟺ ∫ G X Z d P = ∫ G Y Z d P ⟺ E P [ X Z ⋅ I G ] = E P [ Y Z ⋅ I G ] ∫ G X d Q = ∫ G Y d Q ⟺ ∫ G X Z d P = ∫ G Y Z d P ⟺ E P [ X Z ⋅ I G ] = E P [ Y Z ⋅ I G ]
因此,目标等价于证明:对于 ∀ G ∈ G ∀ G ∈ G ,有:
E P [ X Z ⋅ I G ] = E P [ Y Z ⋅ I G ] E P [ X Z ⋅ I G ] = E P [ Y Z ⋅ I G ]
注意到 Y = E Q [ X ∣ ∣ G ] Y = E Q [ X | G ] 为 G − G − measurable,那么RHS:
E P [ Y Z ⋅ I G ] = E P [ E P [ Y Z ⋅ I G ∣ ∣ G ] ] (Tower property) = E P [ I G Y ⋅ E P [ Z ∣ ∣ G ] ] ( I G Y is G − measurable) = E P [ I G ⋅ E P [ Z X | G ] E P [ Z | G ] ⋅ E P [ Z ∣ ∣ G ] ] = E P [ I G ⋅ E P [ Z X ∣ ∣ G ] ] = E P [ E P [ Z X ⋅ I G ∣ ∣ G ] ] ( I G is G − measurable) = E P [ Z X ⋅ I G ] (Tower property) E P [ Y Z ⋅ I G ] = E P [ E P [ Y Z ⋅ I G | G ] ] (Tower property) = E P [ I G Y ⋅ E P [ Z | G ] ] ( I G Y is G − measurable) = E P [ I G ⋅ E P [ Z X | G ] E P [ Z | G ] ⋅ E P [ Z | G ] ] = E P [ I G ⋅ E P [ Z X | G ] ] = E P [ E P [ Z X ⋅ I G | G ] ] ( I G is G − measurable) = E P [ Z X ⋅ I G ] (Tower property)
证毕。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 【译】Visual Studio 中新的强大生产力特性
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 【设计模式】告别冗长if-else语句:使用策略模式优化代码结构