Definition. (Lebesgue outer measure)
对于任意集合 \(A \subset \mathbb{R}\) 的勒贝格外测度(Lebesgue outer measure)定义为:
\[m^{*}(A) = \inf Z_{A}, \quad \mbox{where } Z_{A} = \left\{ \sum\limits^{\infty}_{n=1}l(I_{n}): ~ I_{n} \mbox{ are intervals, } A \subset \bigcup\limits^{\infty}_{n=1} I_{n} \right\}
\]
同时我们称区间序列 \(\left\{ I_{n} \right\}^{\infty}_{n=1}\) 覆盖(cover)了集合 \(A\)。
Theorem 7.1
对于集合 \(A \subset \mathbb{R}\),当且仅当 \(m^{*}(A) = 0\),\(A\) 为一个零测集。
Proof. (Theorem 7.1)
\(\Longrightarrow\) 设 \(A \subset \mathbb{R}\) 且 \(m^{*}(A) = 0\)。由定义:
\[m^{*}(A) = \inf\left\{ \sum\limits^{\infty}_{n=1} l(I_{n}): ~ I_{n} \mbox{ 为区间, } A \subset \bigcup\limits^{\infty}_{n=1} I_{n} \right\} = 0
\]
Mapping:
\[f: ~ \left\{ \{ I_{n} \}^{\infty}_{n=1}: ~ I_{n} \mbox{ are intervals, } A \subset \bigcup\limits^{\infty}_{n=1}I_{n} \right\} \longrightarrow \left\{ \sum\limits^{\infty}_{n=1} l(I_{n}): ~ I_{n} \mbox{ are intervals, } A \subset \bigcup\limits^{\infty}_{n=1}I_{n} \right\}
\]
为一个 surjection(满射)。即对于:
\[\forall \sum\limits^{\infty}_{n=1} l(I_{n}), ~ I_{n} \mbox{ are intervals, } A \subset\bigcup\limits^{\infty}_{n=1}I_{n}: ~ \exists \left\{ I^{'}_{n} \right\}^{\infty}_{n=1}, I^{'}_{n} \mbox{ are intervals, } A \subset\bigcup\limits^{\infty}_{n=1}I^{'}_{n}: ~ \sum\limits^{\infty}_{n=1} l(I_{n}) = \sum\limits^{\infty}_{n=1} l(I^{'}_{n})
\]
(意思就是,对于每一个这种区间长度和,总能找到一个满足相同条件的区间序列,最差的情况也可以是自己。)
所以可以应用 infimum 的定义:
-
for \(~ \forall \left\{ I_{n} \right\}^{\infty}_{n=1}, ~ I_{n} \mbox{ are intervals}, ~ A \subset \bigcup\limits^{\infty}_{n=1} I_{n}: ~ \sum\limits^{\infty}_{n=1}l(I_{n}) \geq 0\)
-
for \(~ \forall \varepsilon > 0: ~ \exists \left\{ I^{'}_{n} \right\}^{\infty}_{n=1}, ~ I^{'}_{n} \mbox{ are intervals}, ~ A \subset \bigcup\limits^{\infty}_{n=1} I^{'}_{n}: ~ \sum\limits^{\infty}_{n=1} l(I^{'}_{n}) < \varepsilon\)
其中 2. 恰好满足了零测集的定义。
\[\]
\[\]
\(\Longleftarrow\) 设 \(A \subset \mathbb{R}\) 且 \(A\) 为零测集,由定义:
\[\mbox{for } ~ \forall \varepsilon > 0: ~ \exists \left\{ I_{n} \right\}^{\infty}_{n=1}, ~ I_{n} \mbox{ 为区间}: ~ A \subset \bigcup\limits^{\infty}_{n=1} I_{n}, ~ \sum\limits^{\infty}_{n=1} l(I_{n}) < \varepsilon
\]
并且:\(\sum\limits^{\infty}_{n=1} l(I_{n})\) 为长度和,必有:\(\sum\limits^{\infty}_{n=1} l(I_{n}) \geq 0\),所以:
\[m^{*}(A) = \inf\left\{ \sum\limits^{\infty}_{n=1} l(I_{n}): ~ I_{n} \mbox{ are intervals}, ~ A \subset \bigcup\limits^{\infty}_{n=1}I_{n} \right\} = 0
\]
Theorem 7.2
如果 \(A \subset B\),那么 \(m^{*}(A) \leq m^{*}(B)\)。
Lemma.
若 \(A\subset B\),则 \(\inf A \geq \inf B\)。
Proof. (Lemma)
由下确界定义:
\[\forall b \in B: ~ b \geq \inf B
\]
又:\(A \subset B\),则有:
\[\forall a \in A: ~ a \in B
\]
所以:
\[\forall a \in A: ~ a \geq \inf B
\]
由下确界定义:
\[\forall \varepsilon > 0: ~ \exists a_{0} \in A: ~ a_{0} < \inf A + \varepsilon
\]
假设 \(\inf A < \inf B\),令 \(\varepsilon = \inf B - \inf A > 0\),则:
\[\exists a_{0} \in A: ~ a_{0} < \inf A + \inf B - \inf A = \inf B
\]
这与: \(\forall a \in A: ~ a \geq \inf B\) 矛盾,故 \(\inf A \geq \inf B\)。
Proof. (Theorem 7.2)
设:
\[\begin{align*}
& \inf\left\{ \sum\limits^{\infty}_{n=1}l(I_{n}): ~ I_{n} \mbox{ 为区间}, ~ A \subset\bigcup\limits^{\infty}_{n=1} I_{n} \right\} = m^{*}(A) = a\\
& \inf\left\{ \sum\limits^{\infty}_{n=1}l(J_{n}): ~ J_{n} \mbox{ 为区间}, ~ B \subset\bigcup\limits^{\infty}_{n=1} J_{n} \right\} = m^{*}(B) = b\\
\end{align*}
\]
由于 \(A \subset B\),则:\(A \subset B \subset \bigcup\limits^{\infty}_{n=1}J_{n}\),\(\left\{ J_{n} \right\}^{\infty}_{n=1}\) 为以上定义的区间序列。所以包含 \(B\) 的这样的区间序列 \(\left\{ J_{n} \right\}^{\infty}_{n=1}\) 也一定包含 \(A\)。
(即:\(\left\{ J_{n} \right\}^{\infty}_{n=1}\) 一定是 \(\left\{ I_{n} \right\}^{\infty}_{n=1}\),但\(\left\{ I_{n} \right\}^{\infty}_{n=1}\) 不一定是 \(\left\{ J_{n} \right\}^{\infty}_{n=1}\))
所以:
\[\left\{\left\{ I_{n} \right\}^{\infty}_{n=1}: ~ I_{n} \mbox{ 为区间}, ~ A \subset\bigcup\limits^{\infty}_{n=1} I_{n} \right\} \supset \left\{\left\{ J_{n} \right\}^{\infty}_{n=1}: ~ J_{n} \mbox{ 为区间}, ~ B \subset\bigcup\limits^{\infty}_{n=1} J_{n} \right\}
\]
由 Theorem 7.1 的证明中构造的映射,有:
\[\left\{\sum\limits^{\infty}_{n=1}l(I_{n}): ~ I_{n} \mbox{ 为区间}, ~ A \subset\bigcup\limits^{\infty}_{n=1} I_{n} \right\} \supset \left\{\sum\limits^{\infty}_{n=1}l(J_{n}): ~ J_{n} \mbox{ 为区间}, ~ B \subset\bigcup\limits^{\infty}_{n=1} J_{n} \right\}
\]
which implies:
\[\implies \inf Z_{A} \leq \inf Z_{B} \quad \implies a \leq b \\
\mbox{(By the conclusion of previous lemma)}
\]
Theorem 7.3
如果 \(I\) 是一个区间,那么 \(m^{*}(I) = l(I)\)。
Proof. (Theorem 7.3)
首先,我们知道:
\[m^{*}(I) = \inf\left\{ \sum\limits^{\infty}_{n=1}l(I_{n}): ~ I_{n} \mbox{ are intervals, } I \subset \bigcup\limits^{\infty}_{n=1}I_{n} \right\}
\]
对于 \(\forall \sum\limits^{\infty}_{n=1}l(I_{n}), ~ I_{n} \mbox{ are intervals, } I \subset \bigcup\limits^{\infty}_{n=1}I_{n}\):
由于 \(I \subset \bigcup\limits^{\infty}_{n=1} I_{n}\),则 \(l(I) \leq \sum\limits^{\infty}_{n=1} l(I_{n})\),故:
\[\forall \sum\limits^{\infty}_{n=1}l(I_{n}) \in \left\{ \sum\limits^{\infty}_{n=1}l(I_{n}): ~ I_{n} \mbox{ are intervals, } I \subset \bigcup\limits^{\infty}_{n=1}I_{n} \right\}: ~ l(I) \leq \sum\limits^{\infty}_{n=1} l(I_{n})
\]
由于 \(I\) 为区间,且 \(I \subset I\),则:
\[l(I) \in \left\{ \sum\limits^{\infty}_{n=1}l(I_{n}): ~ I_{n} \mbox{ are intervals, } I \subset \bigcup\limits^{\infty}_{n=1}I_{n} \right\}
\]
则:
\[\mbox{for: } \forall \varepsilon > 0: ~ \exists l(I) \in \left\{ \sum\limits^{\infty}_{n=1}l(I_{n}): ~ I_{n} \mbox{ are intervals, } I \subset \bigcup\limits^{\infty}_{n=1}I_{n} \right\}: ~ l(I) < l(I) + \varepsilon
\]
所以:
\[m^{*}(I) = \inf \left\{ \sum\limits^{\infty}_{n=1}l(I_{n}): ~ I_{n} \mbox{ are intervals, } I \subset \bigcup\limits^{\infty}_{n=1}I_{n} \right\} = l(I)
\]
Theorem 7.4 (Countable subadditivity - 次可加性)
\[m^{*}\big( \bigcup\limits^{\infty}_{n=1} E_{n} \big) \leq \sum\limits^{\infty}_{n=1} m^{*}(E_{n})
\]
Proof. (Theorem 7.4)
由定义:
\[m^{*}(\bigcup\limits^{\infty}_{n=1}E_{n}) = \inf\left\{ \sum\limits^{\infty}_{t=1} l(J_{t}): ~ J_{t} \mbox{ 为区间, } \bigcup\limits^{\infty}_{n=1}E_{n} \subset \bigcup\limits^{\infty}_{t=1}J_{t} \right\}
\]
For \(\forall E_{n}\),有:\(m^{*}(E_{n}) = \inf\left\{ \sum\limits^{\infty}_{s=1}l(I^{n}_{s}): ~ I^{n}_{s} \mbox{ 为区间, } E_{n} \subset \bigcup\limits^{\infty}_{s=1} I^{n}_{s} \right\}\)
若对于 \(\forall n \in \mathbb{N}^{+}: ~ E_{n} \subset \bigcup\limits^{\infty}_{s=1} I^{n}_{s}\),其中\(I_{s}^{n}\) 为区间,则对于 \(\forall x \in \bigcup\limits^{\infty}_{n=1} E_{n}: ~ \exists n_{0} \in \mathbb{N}^{+}: x \in E_{n_{0}}\),则 \(x \in \bigcup\limits^{\infty}_{s=1}I^{n_{0}}_{s}\)。
又:\(\bigcup\limits^{\infty}_{s=1}I^{n_{0}}_{s} \subset \bigcup\limits^{\infty}_{n=1}\bigcup\limits^{\infty}_{s=1} I^{n}_{s}\),则:
\[\forall x \in \bigcup\limits^{\infty}_{n=1} E_{n}: ~ x \in \bigcup\limits^{\infty}_{n=1}\bigcup\limits^{\infty}_{s=1} I^{n}_{s} \quad \iff \quad \bigcup\limits^{\infty}_{n=1} E_{n} \subset \bigcup\limits^{\infty}_{n=1}\bigcup\limits^{\infty}_{s=1} I^{n}_{s}
\]
因此,若对于 \(\forall n \in \mathbb{N}^{+}: ~ E_{n} \subset \bigcup\limits^{\infty}_{s=1}I^{n}_{s}\),则有:\(\bigcup\limits^{\infty}_{n=1} E_{n} \subset \bigcup\limits^{\infty}_{n=1}\bigcup\limits^{\infty}_{s=1} I^{n}_{s}\)
设两集合:
\[\begin{align*}
A & = \left\{ \left\{ J_{t} \right\}^{\infty}_{t=1}: ~ J_{t} \mbox{ 为区间, } \bigcup\limits^{\infty}_{n=1}E_{n} \subset \bigcup\limits^{\infty}_{t=1} J_{t} \right\} \\
B & = \left\{ \left\{ I^{n}_{s} \right\}^{\infty, \infty}_{n=1, s=1}: ~ I^{n}_{s} \mbox{ 为区间, } E_{n} \subset \bigcup\limits^{\infty}_{s=1}I^{n}_{s} \right\} \\
& = \left\{ \left\{ I^{n}_{s} \right\}^{\infty, \infty}_{n=1, s=1}: ~ I^{n}_{s} \mbox{ 为区间, } E_{n} \subset \bigcup\limits^{\infty}_{s=1}I^{n}_{s}, ~ \bigcup\limits^{\infty}_{n=1} E_{n} \subset \bigcup\limits^{\infty}_{n=1}\bigcup\limits^{\infty}_{s=1} I^{n}_{s} \right\}
\end{align*}
\]
可以发现,若视 \(B\) 中的 \(\left\{ I^{n}_{s} \right\}^{\infty, \infty}_{n=1, s=1}\) 为一个新的区间序列,且该区间序列的可数并包含了 \(\bigcup\limits^{\infty}_{n=1} E_{n}\),这符合 \(A\) 的定义,所以:
\[B \subset A
\]
由 (i) 中所述的满射方式,存在以下满射 \(f\) :
\[A = \left\{ \left\{ J_{t} \right\}^{\infty}_{t=1}: ~ J_{t} \mbox{ 为区间, } \bigcup\limits^{\infty}_{n=1}E_{n} \subset \bigcup\limits^{\infty}_{t=1} J_{t} \right\} \longrightarrow \left\{ \sum\limits^{\infty}_{t=1}l(J_{t}): ~ J_{t} \mbox{ 为区间, } \bigcup\limits^{\infty}_{n=1}E_{n} \subset \bigcup\limits^{\infty}_{t=1} J_{t} \right\} = C
\]
而:
\[\begin{align*}
f(B) & = f\left(\left\{ \left\{ I^{n}_{s} \right\}^{\infty, \infty}_{n=1, s=1}: ~ I^{n}_{s} \mbox{ 为区间, } E_{n} \subset \bigcup\limits^{\infty}_{s=1}I^{n}_{s}, ~ \bigcup\limits^{\infty}_{n=1} E_{n} \subset \bigcup\limits^{\infty}_{n=1}\bigcup\limits^{\infty}_{s=1} I^{n}_{s} \right\}\right)\\
& = \left\{ \sum\limits^{\infty}_{n=1}\sum\limits^{\infty}_{s=1} l(I^{n}_{s}): ~ I^{n}_{s} \mbox{ 为区间, } E_{n} \subset \bigcup\limits^{\infty}_{s=1}I^{n}_{s}, ~ \bigcup\limits^{\infty}_{n=1} E_{n} \subset \bigcup\limits^{\infty}_{n=1}\bigcup\limits^{\infty}_{s=1} I^{n}_{s} \right\}\\
& = D
\end{align*}
\]
由 \(B \subset A\),则 \(D \subset C\),则:
\[\inf D \geq \inf C \\
\iff \\
\inf \left\{ \sum\limits^{\infty}_{t=1}l(J_{t}): ~ J_{t} \mbox{ 为区间, } \bigcup\limits^{\infty}_{n=1}E_{n} \subset \bigcup\limits^{\infty}_{t=1} J_{t} \right\} \leq \left\{ \sum\limits^{\infty}_{n=1}\sum\limits^{\infty}_{s=1} l(I^{n}_{s}): ~ I^{n}_{s} \mbox{ 为区间, } E_{n} \subset \bigcup\limits^{\infty}_{s=1}I^{n}_{s}, ~ \bigcup\limits^{\infty}_{n=1} E_{n} \subset \bigcup\limits^{\infty}_{n=1}\bigcup\limits^{\infty}_{s=1} I^{n}_{s} \right\}
\]
又:\(\left\{ I^{n}_{s} \right\}^{\infty}_{s=1}\) 的选择至于条件 “\(E_{n} \subset \bigcup\limits^{\infty}_{s=1} I^{n}_{s}\)” 有关(对于每个 \(n \in \mathbb{N}^{+}\)), 则与 \(n\) 无关,则:
\[\inf\left\{ \sum\limits^{\infty}_{n=1}\sum\limits^{\infty}_{s=1} l(I^{n}_{s}): ~ I^{n}_{s} \mbox{ 为区间, } E_{n} \subset \bigcup\limits^{\infty}_{s=1}I^{n}_{s}, ~ \bigcup\limits^{\infty}_{n=1} E_{n} \subset \bigcup\limits^{\infty}_{n=1}\bigcup\limits^{\infty}_{s=1} I^{n}_{s} \right\} = \sum\limits^{\infty}_{n=1} \inf\left\{ \sum\limits^{\infty}_{n=1}l(I^{n}_{s}): ~ I^{n}_{s} \mbox{ 为区间, } E_{n} \subset \bigcup\limits^{\infty}_{s=1} I^{n}_{s} \right\}
\]
-
其实这里有种更简单的证明,即直接证明以上两边相等。设:
\[\begin{align*}
D & = \left\{ \sum\limits^{\infty}_{n=1}\sum\limits^{\infty}_{s=1} l(I^{n}_{s}): ~ I^{n}_{s} \mbox{ 为区间, } E_{n} \subset \bigcup\limits^{\infty}_{s=1}I^{n}_{s}, ~ \bigcup\limits^{\infty}_{n=1} E_{n} \subset \bigcup\limits^{\infty}_{n=1}\bigcup\limits^{\infty}_{s=1} I^{n}_{s} \right\}\\
D_{n} & = \left\{ \sum\limits^{\infty}_{n=1}l(I^{n}_{s}): ~ I^{n}_{s} \mbox{ 为区间, } E_{n} \subset \bigcup\limits^{\infty}_{s=1} I^{n}_{s} \right\}
\end{align*}
\]
则 \(\inf{D}\) 满足:
① \(\sum\limits^{\infty}_{n=1}\sum\limits^{\infty}_{s=1} l(I^{n}_{s}) \in D: ~ \sum\limits^{\infty}_{n=1}\sum\limits^{\infty}_{s=1} l(I^{n}_{s}) \geq \inf{D}\)
② \(\forall \varepsilon: ~ \exists \sum\limits^{\infty}_{n=1}\sum\limits^{\infty}_{s=1} l(I^{n}_{s}) \in D: ~ \sum\limits^{\infty}_{n=1}\sum\limits^{\infty}_{s=1} l(I^{n}_{s}) < \inf{D} + \varepsilon\)
则:
①
\[\begin{align*}
& \forall n \in \mathbb{N}^{+}: ~ \forall \sum\limits^{\infty}_{s=1} l(I^{n}_{s}) \in D_{n}: ~ \sum\limits^{\infty}_{s=1} l(I^{n}_{s}) \geq \inf{D_{n}}\\
\implies & \\
&\forall \sum\limits^{\infty}_{n=1}\sum\limits^{\infty}_{s=1} l(I^{n}_{s}) \in D: ~ \sum\limits^{\infty}_{n=1}\sum\limits^{\infty}_{s=1} l(I^{n}_{s}) \geq \sum^{\infty}_{n=1} \inf{D_{n}}
\end{align*}
\]
②
\[\begin{align*}
& \forall n \in \mathbb{N}^{+}: ~ \forall \varepsilon_{n} = \frac{\varepsilon}{2^{n}} > 0: ~ \exists \sum\limits^{\infty}_{s=1} l(I^{n}_{s}) \in D_{n}: ~ \exists \sum\limits^{\infty}_{s=1} l(I^{n}_{s}) < \inf{D_{n}} + \varepsilon_{n} \\
\implies & \\
& \forall \sum\limits^{\infty}_{n=1} \varepsilon_{n} = \varepsilon > 0: ~ \exists \sum\limits^{\infty}_{n=1}\sum\limits^{\infty}_{s=1} l(I^{n}_{s}) \in D: ~ \sum\limits^{\infty}_{n=1}\sum\limits^{\infty}_{s=1} l(I^{n}_{s}) < \sum\limits^{\infty}_{n=1} \inf{D_{n}} + \varepsilon
\end{align*}
\]
所以:
\[\inf{D} = \sum\limits^{\infty}_{n=1} \inf{D_{n}}
\]
所以:
\[\inf{\left\{ \sum\limits^{\infty}_{t=1}l(J_{t}): ~ J_{t} \mbox{ 为区间, } \bigcup\limits^{\infty}_{n=1}E_{n} \subset \bigcup\limits^{\infty}_{t=1} J_{t} \right\}} \leq \sum\limits^{\infty}_{n=1}\inf\left\{ \sum\limits^{\infty}_{n=1}l(I^{n}_{s}): ~ I^{n}_{s} \mbox{ 为区间, } E_{n} \subset \bigcup\limits^{\infty}_{s=1} I^{n}_{s} \right\}\\
\iff\\
m^{*}\big( \bigcup^{\infty}_{n=1} E_{n} \big) \leq \sum\limits^{\infty}_{n=1}m^{*}(E_{n})
\]
Theorem 7.5 (Translation invariant - 平移不变性)
对于 \(\forall A \subset \mathbb{R}: ~ \forall t \in \mathbb{R}: ~ m^{*}(A) = m^{*}(A + t)\),其中 \(A + t = \left\{ a + t: ~ \forall a \in A \right\}\)
Proof. (Theorem 7.5)
对于 \(\forall A \subset \mathbb{R}: ~ \forall t \in \mathbb{R}\),令:
\[\begin{align*}
m^{*}(A) & = \inf\left\{ \sum\limits^{\infty}_{n=1} l(I_{n}): ~ I_{n} \mbox{ 为区间, } A \subset \bigcup\limits^{\infty}_{n=1} I_{n} \right\}\\
m^{*}(A + t) & = \inf\left\{ \sum\limits^{\infty}_{n=1} I_{n}^{'}: ~ I_{n}^{'} \mbox{ 为区间, } A + t \subset \bigcup\limits^{\infty}_{n=1} I^{'}_{n} \right\}
\end{align*}
\]
由满射确定 \(m^{*}(A)\) 的原象:
\[N = \left\{ \left\{ I_{n} \right\}^{\infty}_{n=1}: ~ I_{n} \mbox{ 为区间, } A \subset \bigcup\limits^{\infty}_{n=1} I_{n} \right\}
\]
令:
\[N^{'} = \left\{ \left\{ I^{'}_{n} \right\}^{\infty}_{n=1}: ~ \left\{ I^{'}_{n} \right\}^{\infty}_{n=1} = \left\{ I_{n} + t \right\}^{\infty}_{n=1} \mbox{ for } \forall \left\{ I_{n} \right\}^{\infty}_{n=1} \in N \right\}
\]
由于 \(I_{n} + t = \left\{ i_{n} + t: ~ i_{n} \in I_{n} \right\}\) ,\(I_{n}\) 为区间,则 \(I^{'}_{n} = I_{n} + t\) 也为区间。
令 \(I_{n}\) 的左端点为 \(a_{n}, b_{n}\),则 \(I^{'}_{n}\) 的左右端点为 \(a_{n} + t, b_{n} + t\),则:
\[\sum\limits^{\infty}_{n=1} l(I_{n}) = \sum\limits^{\infty}_{n=1} (b_{n} - a_{n}) = \sum\limits^{\infty}_{n=1} l(I^{'}_{n}) = \sum\limits^{\infty}_{n=1} (b^{'}_{n} - a^{'}_{n}) = \sum\limits^{\infty}_{n=1}\big( (b_{n} + t) - (a_{n} + t) \big)
\]
并且,如果 \(A \subset \bigcup\limits^{\infty}_{n=1}I_{n}\),则
\[\forall a \in A: ~ a \in \bigcup\limits^{\infty}_{n=1} I_{n} ~ \implies ~ \forall a \in A: ~ \exists n_{0} \in \mathbb{N}^{+}: ~ a \in I_{n_{0}}\\
\implies ~ \forall a \in A: ~ \exists n_{0} \in \mathbb{N}^{+}: ~ a + t \in I^{'}_{n_{0}} ~ \implies ~ \forall a \in A: ~ a + t \in \bigcup\limits^{\infty}_{n=1}I^{'}_{n}
\]
又因为:
\[a \in A \quad \iff \quad a + t \in A + t
\]
则:
\[\forall a + t \in A + t: ~ a + t \in \bigcup\limits^{\infty}_{n=1} I^{'}_{n} \quad \implies \quad A + t \subset \bigcup\limits^{\infty}_{n=1} I^{'}_{n}
\]
反之可证:若 \(A + t \subset \bigcup\limits^{\infty}_{n=1} I^{'}_{n}\),则 \(A \subset \bigcup\limits^{\infty}_{n=1} I_{n}\), 则:
\[\left\{ \sum\limits^{\infty}_{n=1} l(I_{n}): ~ I_{n} \mbox{ 为区间, } A \subset \bigcup\limits^{\infty}_{n=1} I_{n} \right\} = \left\{ \sum\limits^{\infty}_{n=1} l(I^{'}_{n}): ~ I^{'}_{n} \mbox{ 为区间, } A + t \subset \bigcup\limits^{\infty}_{n=1} I^{'}_{n} \right\}
\]
所以二者下确界也相等,所以:
\[\forall A \subset \mathbb{R}: ~ \forall t \in \mathbb{R}: ~ m^{*}(A) = m^{*}(A + t)
\]