测度论:Measure Theory (3)
Definition. (Product \(\sigma-\)field)
Let \(\Omega_1\) and \(\Omega_2\) be two (universal) sets and \(\Omega ~ = ~ \Omega_1 \times \Omega_2\) be the Cartesian product. Suppose \({\cal F}_1\) is a \(\sigma\)-field on \(\Omega_1\) and \({\cal F}_2\) is a \(\sigma\)-field on \(\Omega_2\).
For \(\forall A_{1} \in \mathcal{F}_{1}, ~ \forall A_{2} \in \mathcal{F}_{2}\), the minimal \(\sigma\)-field \(\cal F\) in \(\Omega\) containing all "rectangles":
is called the product \(\sigma\)-field of \({\cal F}_1\) and \({\cal F}_2\), denoted by \({\cal F} ~ = ~ {\cal F}_1 \times {\cal F}_2\).
- That is to say, the product \(\sigma\)-field \({\cal F}={\cal F}_1\times{\cal F}_2\) is the \(\sigma-\)field generated by:
Theorem 3.1
The product \(\sigma\)-field \({\cal F}_1\times{\cal F}_2\) is generated by the family of sets ("cylinders"):
Notes 1. (Theorem 3.1)
Denote the product \(\sigma\)-field by \(\cal F_{R} = F_{1} \times F_{2}\), where the rectangle \(\cal R\) is defined as:
\(\cal F_R\) is the \(\sigma-\)field generated by \(\mathcal{R}\). So the theorem is actually stating that, the \(\sigma-\)field generated by \(\cal R\) is identical to the \(\sigma-\)field generated by \(\cal C\) (i.e., \(~\cal F_R = F_C\)).
Notes 2. (Theorem 3.1)
设有全集 \(\Omega_{1}, ~ \Omega_{2}\), 它们的笛卡尔积(Cartisian product)定义为:
设在 \(\Omega_{1}, ~ \Omega_{2}\) 上分别有 \(\cal F_{1}, F_{2}\) 两个 \(\sigma-\)field,则它们的笛卡尔积定义为包含所有“rectangle” \(A_{1} \times A_{2}\) 的最小 \(\sigma-\)field。其中,对于每一个 \(A_{1} \in \cal F_{1}\) 和 \(A_{2} \in \cal F_{2}\),同理都有:
也就是说两个 \(\sigma\) 域的笛卡尔积可以由以下两种等价的定义方式给出:
- \(\cal F = F_{1} \times F_{2}\)是包含所有"rectangle": \(A_{1} \times A_{2}= \left\{ (a_{1}, a_{2}): ~ a_{1} \in A_{1}, ~ a_{2} \in A_{2} \right\} \mbox{ for } \forall A_{1} \in \mathcal{F_{1}}, \forall A_{2} \in \mathcal{F_{2}}\)的最小\(\sigma\)域。定义包含所有rectangle的集类:
- \(\cal F = F_{1} \times F_{2}\) 是由所有“cylinders”:\({\cal C} = \{A_1\times\Omega_2:~A_1\in{\cal F}_1\}\cup\{\Omega_1\times A_2:~A_2\in{\cal F}_2\} ~ \mbox { for } \forall A_{1} \in \mathcal{F_{1}}, \forall A_{2} \in \mathcal{F_{2}}\) 构成的集类生成的 \(\sigma\)域。定义包含所有cylinder的集类:
这里必须明确,犹如前文提到:"由...生成的 \(\sigma\)域","..."是集类(集合的集合)而非集合(狭义的)。例如设全集 \(= \left\{ 0, 1, 2, 3 \right\}\),由集类 \(\left\{ \left\{ 1 \right\}\right\}\) 生成的 \(\sigma\)域:\(\left\{ \emptyset, \Omega, \left\{ 1 \right\}, \left\{ 0, 2, 3 \right\} \right\}\)。
此处,\(A_{1} \in \mathcal{F_{1}}, ~ A_{2} \in \mathcal{F_{2}}\) 为两个集合,它们的笛卡尔积依然为集合————试想两个单点集合的笛卡尔积为一个二维坐标点集。但是,对于不同的 \(A_{1} \in \mathcal{F_{1}}, A_{2} \in \mathcal{F_{2}}\), \(\left\{ A_{1} \times A_{2}: A_{1} \in \mathcal{F_{1}}, A_{2} \in \mathcal{F_{2}} \right\}\) 却是一个集类,因为:
同理,对于特定的 \(A_{1} \in \mathcal{F_{1}}, A_{2} \in \mathcal{F_{2}}\),\((A_{1} \times \Omega_{2}) \cup (A_{2} \times \Omega_{1})\) 是集合;但是对于 \(\forall A_{1} \in \mathcal{F_{1}}, \forall A_{2} \in \mathcal{F_{2}}\), 所有随之分别构造的 \((A_{1} \times \Omega_{2}) \cup (A_{2} \times \Omega_{1})\) 组成了集类 \(\cal C\):
总而言之, 这里说的"rectangle"和"cylinder"都是集合,但对于所有的 \(A_{1}, A_{2}\) 从而各自组成了集类。
Lemma 3.1.1 (Theorem 3.1)
设 \(A, B\) 为两个集合,则以下三个说法等价:
- \((A \cup B) = (A \cap B)\)
- \(A = B\)
- \(A \Delta B = \emptyset\)
Proof. (Lemma 3.1.1)
若\(A = B\),则显然有\((A \cup B) = (A \cap B)\) 和 \(A \Delta B = \emptyset\),则\(2 \rightarrow 1, ~ 2 \rightarrow 3\)自然成立。
现在证明:\(1 \rightarrow 2\)。若 \((A \cup B) = (A \cap B)\) 成立,假设 \(A \not\subset B\),则:\(\exists k \in A: ~ k \notin B\)。而若 \(k \in A\),则 \(k \in (A \cup B)\),又由条件 \((A \cup B) = (A \cap B)\),则 \(k \in (A \cap B) \implies k \in B\)。故产生矛盾,所以假设不成立, 有 \(A \subset B\)。同理可证 \(B \subset A\),所以 \(A = B\)。
最后证明:\(1 \rightarrow 3\)。若 \((A \cup B) = (A \cap B)\) 成立,有:
这说明:\((A \Delta B) \subset (A \cap B)\)。若 \((A \Delta B) \neq \emptyset\),则有:
而 \(k \in (A \Delta B)\) 意味着 \(k \in A, ~ k \notin B\) 或 \(k \in B, ~ k \notin A\),与结论矛盾,所以 \((A \Delta B) = \emptyset\)。
至此我们完成证明 \(1 \leftrightarrow 2\) 和 \(1 \leftrightarrow 3\),得证:\(1 \leftrightarrow 2 \leftrightarrow 3\)。
Lemma 3.1.2 (Theorem 3.1)
若定义在同一全集上 \(\Omega\) 的两个集类 \(A, B\) 满足 \(A \subset B\),则它们各自生成的 \(\sigma\)域满足:
Proof. (Lemma 3.1.2)
设 \(A \subset B\)。
-
当 \(A = B\),显然 \(\mathcal{F}_{A} = \mathcal{F}_{B}\),则 \(\mathcal{F}_{A} \subset \mathcal{F}_{B}\) 自然成立。
-
当 \(A = \emptyset\),则 \(\mathcal{F}_{A} = \left\{ \emptyset, ~ \Omega \right\}\),而任意的 \(\sigma\) 域都包含 \(\emptyset, ~ \Omega\) 两个集合。故 \(\mathcal{F}_{A} \subset \mathcal{F}_{B}\) 成立。
-
当 \(A \subsetneqq B\) 时,则:
所以必存在非空集 \(D\) 满足:
因为 \(\mathcal{F}_{A}\) 是由 \(A\) 生成的 \(\sigma\)域,有:\(A \subset \mathcal{F}_{A}\),同理可得 \(B \subset \mathcal{F}_{B} \implies (A \cup D) \subset \mathcal{F}_{B}\),
Proof. (Theorem 3.1)
现在,所有cylinders构成的集类:\(\mathcal{C} ~ = ~ \left\{ A_{1} \times \Omega_{2}: ~ A_{1} \in \mathcal{F}_{1} \right\} ~ \cup ~ \left\{ \Omega_{1} \times A_{2}: ~ A_{2} \in \mathcal{F}_{2} \right\}\)。
注意 \(\mathcal{C}\) 的构造方式,它与 \(\left\{ (A_{1} \times \Omega_{2}) \cup (\Omega_{1} \times A_{2}): ~ A_{1} \in \mathcal{F}_{1}, A_{2} \in \mathcal{F}_{2} \right\}\) 完全不同!
所有rectangles构成的集类:\(\mathcal{R} ~ = ~ \left\{ A_{1} \times A_{2}: ~ A_{1} \in \mathcal{F}_{1}, ~ A_{2} \in \mathcal{F}_{2} \right\}\),而它可以写作:
故可以发现:\(\cal C \subset R\),由Lemma 3.1.2.,我们有:\(\cal F_{C} \subset F_{R}\)。
另一方面,对于确定的 \(A_{1} \in \mathcal{F}_{1}, ~ A_{2} \in \mathcal{F}_{2}\),有:
这很好理解,因为:
前半部分(即:\(\left( \left\{ (a_{1}, w_{2}): ~ a_{1} \in A_{1}, ~ w_{2} \in \Omega_{2} \setminus A_{2} \right\} \cap \left\{ (w_{1}, a_{2}): ~ w_{1} \in \Omega_{1} \setminus A_{1}, ~ a_{2} \in A_{2} \right\} \right)\))为 \(\emptyset\),则:
所以对于 \(\forall A_{1} \in \mathcal{F}_{1}, \forall A_{2} \in \mathcal{F}_{2}: ~ A_{1} \times A_{2} ~ = ~ (A_{1} \times \Omega_{2}) \cap (\Omega_{1} \times A_{2})\)。
注意集类 \(\mathcal{C} = \left\{ A_{1} \times \Omega_{2}: ~ A_{1} \in \mathcal{F}_{1} \right\} \cup \left\{ \Omega_{1} \times A_{2}: ~ A_{2} \in \mathcal{F}_{2} \right\}\),其中每一个 \(A_{1} \times \Omega_{2}\) 与 \(\Omega_{1} \times A_{2}\) 都为集合,分别装在两个集类中,再将两个集类进行并运算。因此,\(\cal C\) 实际可以写为:
那么,由 \(\cal C\) 生成的 \(\sigma\)域 \(\cal F_{C}\) 必定包含 \(\cal C\),且满足 \(\sigma\)域的性质。这意味着:\(\cal F_{C}\) 中必定包含以下元素:
现在:\(\mathcal{R} = \left\{ A_{1} \times A_{2}: ~ A_{1} \in \mathcal{F}_{1}, ~ A_{2} \in \mathcal{F}_{2} \right\}\),由于对于 \(\cal R\) 中的每一个元素(集合) \(A_{1} \times A_{2}\),都有 \((A_{1} \times \Omega_{2}) \cap (\Omega_{1} \times A_{2}) = A_{1} \times A_{2}\),而 \((A_{1} \times \Omega_{2})\) 和 \((\Omega_{1} \times A_{2})\) 都被包含在\(\sigma\)域 \(\cal F_{C}\) 中。
由于 \(\sigma\)域有推论性质,对可数交运算封闭,则:
于是:
由于:\(\mathcal{F_{R}}\) 是由 \(\mathcal{R} = \left\{ A_{1} \times A_{2}: ~ A_{1} \in \mathcal{F}_{1}, ~ A_{2} \in \mathcal{F}_{2} \right\}\) 生成的最小\(\sigma\)域,这意味着,\(\cal F_{R}\) 中包含着 \(\cal R\) 中所有的元素(集合)\(A_{1} \times A_{2}\),也仅包含着由这些集合交互进行补运算、可数并运算的结果集合。然而,对于 \(\cal R\) 中的每一项,$ \cal F_{C}$ 都有:\(\left( (A_{1} \times \Omega_{2}) \cap (\Omega_{1} \times A_{2}) \right)\) 与 \(A_{1} \times A_{2}\) 对应,并且 \(\cal F_{C}\) 也为 \(\sigma\)域,也必须要满足对补运算封闭、对可数并运算封闭的性质。所以,由 \(\cal R\) 生成的 \(\sigma\)域 \(\cal F_{R}\) 中的每一项,都在 \(\cal F_{C}\) 中,i.e.:
综上所述,已经证得 \(\cal F_{C} \subset F_{R}, ~ \cal F_{R} \subset F_{C}\),因此:
直观理解
从直观的角度解释 \(\cal R \subset F_{C}\) 的证明:
设:
设:
那么:
由 \(\cal C\) 生成的 \(\sigma\)域 \(\cal F_{C}\) 自然也有以下这些元素:
且对于 \(\cal R\) 中的任意一项:\(A_{1i} \cdot A_{2j}\),都能在 \(\cal F_{C}\) 中找到 \((A_{1i} \times \Omega_{2}) ~ \cap ~ (\Omega_{1} \times A_{2j}) ~ = ~ A_{1i} \cdot A_{2j}\),所以:\(\cal R \subset F_{C}\)。
而后半段对于 \(\cal F_{R} \subset F_{C}\) 的证明,实际上在告诉我们推论:
本文来自博客园,作者:车天健,转载请注明原文链接:https://www.cnblogs.com/chetianjian/articles/16300329.html