Fatou's Lemma 与 单调收敛定理(MCT)
Fatou's Lemma and Monotone Convergence Theorem (MCT)
法图引理和单调收敛定理
在测度论中,Fatou's Lemma和单调收敛定理(MCT)是尤为重要的两个结论,它们不仅可以各自单独被证明,还可以进行互推(即,在已知Fatou's Lemma的条件下证MCT,反之亦然)。互推不意味着在证明中可以用Fatou's Lemma推完MCT后,再用MCT去推Fatou's Lemma,这属于左脚踩右脚就想上天的思路,然而这种不负责任的证明在网上屡见不鲜:
主流的做法是先独立证明MCT,再用MCT的结论证明Fatou's Lemma(例如Terence Tao的\(\textit{An Introduction to Measure Theory}\)和\(\textit{Analysis I}\); Sheldon Axler的\(\textit{Measure, Integration & Real Analysis}\)中均先给出MCT的证明),这里我反其道而行之。
Fatou's Lemma (法图引理)
若\(\left\{f_{n} \right\}^{\infty}_{n=1}\)为一个由非负且可测的函数构成的序列,且对于任意\(n \in \mathbb{N}\),\(f_{n}\)定义在\(E \in \mathcal{M}\)上(\(\mathcal{M}\)代表所有勒贝格可测集构成的集类),那么:
Proof. (Fatou's Lemma)
设:\(g_{n}(x) = \inf\limits_{k \geq n}f_{k}(x)~\) for \(~\forall n \in \mathbb{N}^{+}\),那么:
由于:
则:
i.e., 对于\(\forall x \in E: ~\left\{ g_{n}(x) \right\}^{\infty}_{n=1}\)为一个单调递增序列。
设:\(f(x) = \lim\limits_{n \rightarrow \infty}g_{n}(x)\), 那么\(f(x) = \lim\limits_{n \rightarrow \infty}\left[ \inf\limits_{k \geq n} f_{k}(x)\right] = \liminf\limits_{n \rightarrow \infty}f_{n}(x)\)。
令:\(\varphi\)为任意简单函数,such that \(0 \leq \varphi \leq f = \lim\limits_{n \rightarrow \infty} g_{n} = \liminf\limits_{n \rightarrow \infty} f_{n}\),且\(~\varphi~\)定义在\(E \in \mathcal{M}\)上,那么:\(\varphi \leq \lim\limits_{n \rightarrow \infty}g_{n}\),又:\(g_{n}\)
单调递增,那么:
或等价地:
而:\(g_{n}=\inf\limits_{k \geq n \geq N} f_{k}\),则:\(g_{n} \geq \varphi ~ \implies ~ \inf\limits_{k \geq n \geq N} f_{k} \geq \varphi\)
- 注意:这里的"\(\forall \varphi\)"代表了任意满足\(0 \leq \varphi \leq f\)的简单函数\(\varphi\)。
$g_{n} = \inf\limits_{k \geq n \geq N} f_{k} ~ $ 实际上在表达:函数序列\(\left\{ f_{n} \right\}^{\infty}_{n=1}\)末端的(eventual)的下界 \(\geq\) \(\varphi\),或者说,\(\left\{ f_{n} \right\}^{\infty}_{n=1}\) dominates \(\varphi\) eventually.
当\(N\)确定后,\(\inf\limits_{k \geq N} f_{k}(x)\) 实际上是对一个从 \(n = N\) 的递增序列求其下确界。
那么自然有:
所以命题退化为:
又因为:\(f_{k}(x) \geq \inf\limits_{k \geq N} f_{k}(x) \geq \varphi(x)\),所以:
\(f_{k \in \mathbb{N}}\) 和 \(\varphi\)都定义在\(E \in \mathcal{M}\)上,由Lebesgue Integral的性质,有:
即:
- 注意:这个式子实际在说,对于任意满足\(0 \leq \varphi \leq f\)的简单函数\(\varphi\), \(\int_{E} ~ \varphi ~ dm\) dominated (bounded above) by \(\left\{ \int_{E} ~ f_{k} ~ dm \right\}^{\infty}_{k=1}\) eventually.(i.e. bounded above by \(\left\{ \int_{E} ~ f_{k} ~ dm \right\}^{\infty}_{k=1}\)序列某段末端的下确界。
相似地,\(\left\{ \inf\limits_{k \geq N} \int_{E} ~ f_{k} ~ dm \right\}^{\infty}_{N}\) 也是一个递增序列,则:
由于该不等式对于所有满足\(0 \leq \varphi \leq f\)的简单函数\(\varphi\)都成立,那么:
得证:\(\liminf\limits_{n\rightarrow \infty} \int_{E} ~ f_{n} ~ dm \geq \int_{E} ~ \liminf\limits_{n \rightarrow \infty} ~ f_{n} ~ dm\)。
Monotone Convergence Theorem (MCT: 单调收敛定理)
若\(\left\{ f_{n} \right\}^{\infty}_{n=1}\)为一个非负、可测、递增的函数序列,并且\(\left\{ f_{n} \right\}^{\infty}_{n=1}\)收敛于\(f\),\(f_{n \in \mathbb{N}}\)和\(f\)都定义在\(E \in \mathcal{M}\)上,即\(\forall x \in E: \lim\limits_{n \rightarrow \infty} f_{n}(x) = f(x)\),那么:
Proof. 1 (Monotone Convergence Theorem)
这里我想出了一个不依赖Fatou's Lemma的独立证明。
由于:\(\left\{ f_{n} \right\}^{\infty}_{n=1}\)为非负、可测、递增的函数序列,那么对于:
\(\forall n \in \mathbb{N}: \int_{E} ~ f_{n} ~ dm\) 存在,并且\(\left\{ \int_{E} ~ f_{n} ~ dm \right\}^{\infty}_{n=1}\) 也为递增序列。
由于:\(\left\{ f_{n} \right\}^{\infty}_{n=1}\)单调递增且收敛于\(f\),那么:
故:
令:\(F_{n} = \int_{E} ~ f_{n} ~ dm\),则序列\(\left\{ \int_{E} ~ f_{n} ~ dm \right\}^{\infty}_{n=1} = \left\{ F_{n} \right\}^{\infty}_{n=1}\)单调递增且有上界\(\int_{E} ~ f ~ dm\)(可能为\(\infty\),严格来说正无穷不能称作“上界”)。
现在证明:\(\int_{E} ~ f ~ dm\) 为 \(\left\{ F_{n} \right\}^{\infty}_{n=1}\) 的上确界。
- 已经知道:
- 假设存在\(\epsilon > 0\),such that: \(\quad \int_{E} ~ f ~ dm - \epsilon \geq \int_{E} ~ f_{n} ~ dm \quad\) for all \(n \in \mathbb{N}\), i.e.,
令:\(g_{n} = f - f_{n}\),那么对于\(\forall n \in \mathbb{N}: ~ g_{n} \geq 0\),并且\(\left\{ g_{n} \right\}^{\infty}_{n=1}\)单调递减,以及\(\lim\limits_{n \rightarrow \infty} g_{n} = 0\), 而:
由于 \(\lim\limits_{n \rightarrow \infty} g_{n} = 0 \;\) implies that \(\; \lim\limits_{n \rightarrow \infty} \varphi_{n} = 0\), 因此假设不可能成立。
- 注意:这里其实可以有更严格的证明,即根据极限的定义,通过赋值将简单函数的勒贝格积分控制在\(\epsilon\)以内
所以:\(\left\{ \int_{E} ~ f_{n} ~ dm \right\}^{\infty}_{n=1}\)的上确界为\(\int_{E} ~ f ~ dm\),且它单调递增,
因此:\(\lim\limits_{n \rightarrow \infty} \int_{E} ~ f_{n} ~ dm \; = \; \int_{E} ~ f ~ dm\)
Proof. 2 (Monotone Convergence Theorem)
这个证明使用Fatou's Lemma.
由于:\(\forall n \in \mathbb{N}: ~ f_{n} \leq f\),则:\(\int_{E} ~ f_{n} ~ dm \leq \int_{E} ~ f ~ dm\)。
若\(N\)先确定,有:
由Fatou's Lemma:
同时,显然有:
因此:
所以:
因为当且仅当序列上极限等于下极限时,序列存在极限,且极限值等于上极限等于下极限,则证毕:
本文来自博客园,作者:车天健,转载请注明原文链接:https://www.cnblogs.com/chetianjian/articles/16294322.html