测度论:Measure Theory (1)

这是我的笔记以及一些个人理解,其中大多证明系本人完成。




Notations

  1. N={0,1,2,} - 自然数集
  2. Z={,2,1,0,1,2,} - 整数集
  3. Q={mn:m,nZ,n0} - 有理数集
  4. R - 实数集
  5. Rn={(x1,x2,,xn):xiR for 1in}
  6. Set membership: 若 xA ,则称 x 是集合 A 的一个元素(element)
  7. Set inclusion: aA:aBAB ; A=BAB,BA
  8. Intersection: AB:={x:xA and xB}
  9. Union: AB:={x:xA or xB}
  10. Difference: AB:={xA:xB}
  11. Complement: Ac:=ΩA ,其中 Ω 定义为全集
  12. Symmetric complement: AΔB:=(AB)(BA)




Russell's Paradox*

有的时候一个集合可以将自己作为元素,e.g. E={{{3}}},可以发现EE

设集合 F:={X:FX} 为所有不包含其自身作为元素的集合构成的集类,例如 {1,2,4}F, {a,b,c,d}F, 但 EF 。那么 F 是它自己的一个元素吗?

这种定义方式会产生悖论:假设 FF,那么 FF ;而假设 FF,则 FF 。这种集合的构造方式与集合论公理系统产生了矛盾,故如此构造的集合接下来将被排除在讨论范围之外。





假设我们有集合 A1,A2,A3, ,考虑以下两个集合:
Countable intersections: X:=n=1An=A1A2A3

Countable unions: Y:=n=1An=A1A2A3

实际上,以上写法可以推广到更普遍的形式,对于collection of indices Λ:

αΛAα={x:αΛ,xAα}αΛAα={x:αΛ,xAα}

注意,上面两种写法分别为集合序列{A}n=1可数交可数并,也就是说为可数无穷的集合的交或并。而下面的两种写法中由于Λ不必为可数集,则{Aα}aΛ也不必为可数,因此可以代表不可数无穷的集合的交或并。然而无论是可数还是不可数无穷,始终有:

xαΛAααΛ:xAαxαΛAααΛ:xAα

为什么要强调这看似显而易见的这一点,当时在某个证明中,恰恰是这个简单的问题给初学者的我造成了一些困扰。例如一些看似能类比而实则不能的情况,例如以下这个例子:

Example 1.1

{An}nN 为一个集合序列,such that:

A0={{0}},A1={{0},{0,1}},A2={{0},{0,1},{0,1,2}},An={{0},{0,1},,{0,1,2,,n}}

那么自然数集是否属于这个序列的可数并呢?(i.e. NnNAn ?)

以下是当时我的困扰。
首先,很容易可以证明N=nN{0,1,...,n}

:对于任意的kN,有k{0,1,...,k}nN{0,1,...,n},那么NnN{0,1,...,n}

:Conversely,可数并 nN{0,1,...,n}中的任意一项的元素都为自然数,那么可数并nN{0,1,...,n}的元素也都为自然数(若认为这个证明不够完美,可以用反证,即假设可数并中存在一个不为自然数的元素...),那么nN{0,1,...,n}N

因此,如果我们能通过集合的可数无穷并与归纳(induction)的方法定义自然数集N,为什么不能用类似的方法证明以上的关系(i.e. NnNAn)呢?

因为如果这个关系得以成立,那么存在n0N,such that NAn0。但是任意的An都是有限的,而N是无限的。





De Morgan's Laws

(αAα)c=αAαc(αAα)c=αAαc 




Example 1.2

(The intersection of open sets can be a closed set.)

A1=(1,2)A2=(12,1+12)An=(1n,1+1n)

We have nNAn=[0,1].




Proof. (Example 1.2)

Firstly,for x[0,1],since 1n<0x1<1+1n,then for nN,we have xAn, hence xnNAn

Conversely,suppose xnNAn,such that x[0,1],i.e., x(,0)(1,). W.l.o.g., suppose x(1,), 则ϵ>0,such that x=1+ϵ。However, for ϵ>0,let n=1ϵ+11,then we must have 0<1n<ϵ1<1+1n<1+ϵ。This means for x(1,),there exists An=(1n,1+1n),such that xAnxnNAn, this produces contradiction. Similarly, there is contradicition when x(,0). Therefore, xnNAn:x[0,1].





Definition. Cartisian product

The Cartisian product (笛卡尔积) A×B of sets A and B is the set of all ordered pairs defined as:

A×B:={(a,b):aA,bB}





Definition. Indicator function

The intercator function(指示函数) IA of set A is the function defined as:

IA(x):={1if xA0if xA





Noted that IAB=IAIB, IAB=IA+IBIAIB, IAc=1IA.

Definition. Countability and Cardinality

Set A is called countable (可数的)or denumerable (可列的)if there is a one-to-one mapping between A and a subset of N.





Noted that it should be the "subset of N" here, instead of N itself. Otherwise, there is no one-to-one relationship between the set {1,2,3} and N for instance, while the former is countable apparently.

Two sets A and B are said to have the same cardinality (基数,或势) if there is a one-to-one mapping between A and B.

If there is no one-to-one correspondence between sets A and B, then we say, the cardinality of B is bigger that of A.

Example 1.3

由上述定义,我们可以称偶数和自然数“一样多”(等势)。

Assume the set of all even numbers to be A:={0,2,4,6,},then there is a one-to-one mapping:f:AN,x12x

Indeed, we can show the countability of the set of all rational numbers Q intuitively by the following construction:
01,11,02,11,21,12,0312,21,31,22,13,04,13,22,31,

Notice the way we listed all rational numbers:

  • Numerator:

0;1,0,1;2,1,0,1,2;3,2,1,0,1,2,3;

  • Denominator:

1;1,2,1;1,2,3,2,1;1,2,3,4,3,2,1;

Or more intuitively,
image

image

Example 1.4 (Uncountability of (0,1])

Cantor证明了集合(0,1]不可列。我们可以将(0,1]上的实数以小数的形式写下来:

x1=0.a1,1a1,2a1,3x2=0.a2,1a2,2a2,3x3=0.a3,1a3,2a3,3

其中,ai,j{0,1,,8,9} for i,jZ+

假设它与N之间存在一一映射关系。但是,我们总可以找到这么一个x(0,1)

x=0.b1b2b3

其中bkak,k for kZ+,bk{0,1,,8,9}
i.e., b1a1,1,b2a2,2,b3a3,3,

那么,如此构造的x(0,1]不等于以上任何一个数x1,x2,,也就是说,无论我们如何构造此一一映射,总能找到一个数x(0,1]破坏该映射(使一一映射不成立),即(0,1]N之间不存在一一映射关系,所以(0,1]不可数。

Example 1.5

The cardinality of (0,1) is the same as the cardinality of R, since we can construct a mapping:

f:(0,1)R,xtan(πxπ2)

Theorem 1.1 (Cantor)

For an arbitrary set X, there is no one-to-one correspondence between X and Y = 2^{X} (the power set of X).




Proof. (Theorem 1.1 Cantor)

Suppose there exists a one-to-one mapping φ:XY=2X, where Y is the power set of X.

We know that φ is surjective by one-to-one mapping relationship. Then we have:

ZY=2X:zX:φ(z)=Z

Since Y is the power set of X, that is, Y contains all subsets of X, then ZX. Now, we try to disprove the assumption of surjective relationship.

Define Z:={zX:zφ(z)}, that is, for any element zZX, z is not contained in φ(z). Z is a subset of X, so ZY. Furthermore, by our surjective assumption: z0X:φ(z0)=ZY. However,

  • If z0Z, according to the way we contructed Z, we have z0φ(z0). We have φ(z0)=Z above, then z0Z, which shows contradiction.

  • If z0Z, we must have z0φ(z0). This is because if z0φ(z0), by the way how Z was constructed, we would otherwise have z0Z. Since φ(z0)=Z, there would be contradiction again.

We can conclude from the above that:

zX:φ(z)Z,

which contradicts to our assumption of surjection. Therefore, there exists no surjection from X to 2X, and thus exists no one-to-one mapping X2X.

Corollary 1.1

If Y is the power set of X (i.e. Y=2X), then the cardinality of Y is bigger than the cardinality of X (i.e. |Y|>|X|).




Proof. (Corollary 1.1)

We shown that there exists no one-to-one mapping between X and Y in Theorem 1.1 above. However, since Y is the power set of X, then for xX:{x}Y, so that we can form a one-to-one mapping between X and A:={{x}:xX}Y (i.e. A is the set which contains all singletons of X). By definition, we conclude that |Y|>|X|.





Definition. (σfields)

A family F of subsets of a universal set Ω is clled σfield (or σalgebra) if the following conditions hold:

  1. ΩF
  2. If AF, then AcF.
    (Closed under complement)
  3. If AnF for all n=1,2,, then n=1AnF.
    (Closed under countable unions)




Definition.

Let A be an family of subsets of Ω, then there exists a unique smallest σfield FA that contains every set in A, which is called the σfield generated by A.

Let Ω=R, then the minimal σfield containing all open intervals (a,b) is called Borel σfield, normally denoted by B=B(R)=BR.


Notice a tricky example here. The word "contain" means "" mathematically. Therefore, for example, we should say the σfield generated by {{1}} instead of {1}.





Definition. (Fields)

A family A of subsets of a universal set Ω is called a field if the following conditions hold:

  1. ΩA
  2. A,BA:AB, ABA
    (Equivalently: A,BA:ABA and AA:AcA)



Proof. (Equivalent conditions of Fields)

Suppose A,BA:AB, ABA. Since ΩA, then Ac=ΩAA.

Suppose A,BA:ABA, and AA:AcA. For A,BA, we have AB=ABc=(AcB)c. By assumption, AA indicates AcA, so (AcB)=(AcB)cA, hence ABA.

Example 1.6

Let Ω=R and consider the family of subsets:

A:={AΩ:A or Ac is finite or empty}

Proof that A is a field but not a σfield.

Proof. (Example 1.6)

First of all, is empty, so that c=ΩA.

Suppose for arbitrary non-empty sets A,BΩ, where A,BΩ and A,BA, and one of A,Ac is finite, one of B,Bc is finite (cannot be finite simultaneously).

  1. Suppose A,B are finite. Then AB is finite ABA. Besides, AB=(ABc)A is finite or empty ABA.

  2. Suppose A,B are infinite. Then Ac,Bc are finite, and so is AcBc. Then AcBcA(AcBc)c=(AB)A. Moreover, AB=(ABc)Bc where Bc is finite, thus ABA.

  3. W.l.o.g., suppose A is infinite, B is finite. Then Ac is finite, and so is AcBc. Hence AB=(AcBc)cA. Furthermore, Ac and B are finite and so is AcB. Therefore AB=(AcB)cA.

Above all, A is a field but not a σfield necessarily, for instance let:
A1={a1},A2={a2},A3={a3},,A
then it is not necessary that: n=1AnA.





Theorem 1.2

The intersection of (any) family of σfields over the same universal set Ω is a σfield.




Proof. (Theorem 1.2)

  1. ΩF1,ΩF2ΩF1F2.
  2. for AF1F2, we have AF1 and AF2, then AcF1 and AcF2, which implies AcF1F2.
  3. for A1,A2,F1F2, similarly, n=1AnF1 and n=1AnF2, hence (n=1An)F1F2.
posted @   车天健  阅读(374)  评论(0编辑  收藏  举报
编辑推荐:
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
阅读排行:
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 【译】Visual Studio 中新的强大生产力特性
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 【设计模式】告别冗长if-else语句:使用策略模式优化代码结构
点击右上角即可分享
微信分享提示