numpy矩阵相加时需注意的一个点

  今天在进行numpy矩阵相加的时候出现了一个小的奇怪的地方,下面我们来看看:

>>>P = np.array([1,2,3,4])
>>>F = np.array([9,8,7,6]).reshape((4,1))
>>>P + F
array([[10, 11, 12, 13],
       [ 9, 10, 11, 12],
       [ 8,  9, 10, 11],
       [ 7,  8,  9, 10]])

  咦,怎么会这样,P和F明明都是一维的向量,怎么相加之后成了4×4的矩阵。其实,这和大名鼎鼎的矩阵计算的广播机制有关。再看下面

>>>P = P.reshape((4,1))
>>>P + F
array([[10],
       [10],
       [10],
       [10]])

  这个时候就符合我们的预期了。

  造成上述两次加法结果不同的原因在于,第一次相加的时候P的形状没有被明确指定,结果相加的时候numpy的广播机制起了作用。一个矩阵加上一个常数,等于矩阵的每一个值都加上这个常数。这就是最常见的广播机制了。上述的第一种情况就是使得矩阵F的每一行分别加上P中不同的值,得到每一行的结果1×4的向量,最终结果也就是4×4了。

posted @ 2020-05-21 23:49  思念殇千寻  阅读(2577)  评论(0编辑  收藏  举报