numpy中array数组对象的储存方式(n,1)和(n,)的区别

  资料:https://stackoverflow.com/questions/22053050/difference-between-numpy-array-shape-r-1-and-r

  这篇文章是我偶然点开的stackoverflow上的一个问题,是关于numpy中的array对象的。numpy在python、机器学习界的重要地位不用多说了吧。在此把这个回答翻译领悟一下,以供学习。

  注:仅为学习目的翻译,作者是Gareth Rees,可能会有我自己的修改。

  For learning purposes only !!!

  看待NumPy arrays的最好方式是把它分为两个部分,一个数据缓冲区包含了一块raw elements(原始元素),以及一个view(我叫它视窗)来描述解释数据缓冲区。

  例如如果我们创建一个包含12个整型数的数组 a 

>>> a = numpy.arange(12)
>>> a
array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])

  则 a 包含了一个数据缓冲区,储存成如下的样子:

┌────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┐
│  0 │  1 │  2 │  3 │  4 │  5 │  6 │  7 │  8 │  9 │ 10 │ 11 │
└────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┘

  以及一个视窗,定义了怎样解释数据:

>>> a.flags
  C_CONTIGUOUS : True
  F_CONTIGUOUS : True
  OWNDATA : True
  WRITEABLE : True
  ALIGNED : True
  UPDATEIFCOPY : False
>>> a.dtype
dtype('int64')
>>> a.itemsize
8
>>> a.strides
(8,)
>>> a.shape
(12,)

  在这里,shape=(12,)意味着这个数组仅仅被一个索引支配:从0到11。从概念上讲,假如我们使用这个单独的索引给 打上标签,那么 a 将看起来像这样:

i= 0    1    2    3    4    5    6    7    8    9   10   11
┌────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┐
│  0 │  1 │  2 │  3 │  4 │  5 │  6 │  7 │  8 │  9 │ 10 │ 11 │
└────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┘

  reshape一个数组的操作不会改变数据缓冲区,而是创建一个新的解释数据的视窗。

>>> b = a.reshape((3, 4))

  上面的操作创建了一个和 拥有同一个数据缓冲区的 ,但是现在它被两个索引所支配(two-dimensions indexed)。一个从0到2,一个从0到3,假如我们给数据打上标签,b 看起来会像这样:

i= 0    0    0    0    1    1    1    1    2    2    2    2
j= 0    1    2    3    0    1    2    3    0    1    2    3
┌────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┐
│  0 │  1 │  2 │  3 │  4 │  5 │  6 │  7 │  8 │  9 │ 10 │ 11 │
└────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┘

  这也意味着:

>>> b[2,1]
9

  第二个索引比第一个索引变化的快,假如想反过来,可以使用下面的参数创造一个数组 c 

>>> c = a.reshape((3, 4), order='F')

  补充:order='F'或者order='C'表示数组的索引方式分别像C语言或者Fortran,'C'是缺省值

  这样会产生一个有如下索引的数组:

i= 0    1    2    0    1    2    0    1    2    0    1    2
j= 0    0    0    1    1    1    2    2    2    3    3    3
┌────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┐
│  0 │  1 │  2 │  3 │  4 │  5 │  6 │  7 │  8 │  9 │ 10 │ 11 │
└────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┘

  意味着

>>> c[2,1]
5

  有了前面的铺垫,就很容易理解下面一个例子了:

>>> d = a.reshape((12, 1))

  数组被两个索引支配,第一个索引从0到11,第二个索引始终为0:

i= 0    1    2    3    4    5    6    7    8    9   10   11
j= 0    0    0    0    0    0    0    0    0    0    0    0
┌────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┐
│  0 │  1 │  2 │  3 │  4 │  5 │  6 │  7 │  8 │  9 │ 10 │ 11 │
└────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┘

  所以:

>>> d[10,0]
10

  一个展平的一维数组从某种意义上来说是自由的,所以我们完全可以自己定义每一维的大小:

>>> e = a.reshape((1, 2, 1, 6, 1))

  上面的操作创建了一个这样的数组:

i= 0    0    0    0    0    0    0    0    0    0    0    0
j= 0    0    0    0    0    0    1    1    1    1    1    1
k= 0    0    0    0    0    0    0    0    0    0    0    0
l= 0    1    2    3    4    5    0    1    2    3    4    5
m= 0    0    0    0    0    0    0    0    0    0    0    0
┌────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┬────┐
│  0 │  1 │  2 │  3 │  4 │  5 │  6 │  7 │  8 │  9 │ 10 │ 11 │
└────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┴────┘

  所以:

>>> e[0,1,0,0,0]
6
posted @ 2020-04-11 22:37  思念殇千寻  阅读(2088)  评论(0编辑  收藏  举报