实变函数(Real Analysis)
针对实数函数的分析理论
首先引入集合和映射的概念
-------------------------------------
集合交,并,差。
集合的势:有限集,无限集(可列,不可列)
再考虑实数点集
------------------------------------------------
点集 { x | b < x < a } 被称为开区间
包含点x的开区间被称为点x的邻域
点集A的极限点的集合称为A的导集A'
集合A的闭包 $\bar{A}=A \cup A'$
集合内所有点都是内点的集合为开集
A=A的闭包,则A为闭集
开集性质:任意并,有限交仍然是开集σ
集合A中任意点都存在邻域在R中,则称A相对于R为稠密集
集合A中任意点,都是集类B中某个集合的内点,则称B为A的覆盖。若B中所有集合为开集合,则B为A的开覆盖
引入集合的环和域的概念
-----------------------------------------------------
注:由于测度一般是定义在σ-环上,或者σ-代数上(例如概率空间),因此先引入集合论中的环(ring)和代数(algebra)概念 (注:这里的代数也叫域)
集合X,以X的某些子集为元素组成的集合称为X上的集类,或者简称类,X称为基本空间。
集合X,R是X上的集类,如果 $E_1, E_2 \in R, \Rightarrow E_1 \cup E_2 \in R$, $E_1-E_2 \in R$,则R称为X上的环。
若$X \in R$,则R称为X上的域
即 环中元素的并、差运算封闭,域中元素的并、补运算封闭
若将环中元素的可列并封闭,则环为σ-环,对应的为σ-代数
包含集类E的最小环称为由集类E所张成的环,记为R(E)。
举例:
1,X是基本空间,R是X上的环,X的所有可以由R覆盖的子集组成一个X上的新的集类H(R);(注:H(R)是σ-环)
2,集合X,X的所有有限子集组成环R,H(R)就是X的所有有限或者可列子集;
针对实数集
1,实数集上的所有左开右闭区间组成的集类为P(注:P不是环);
2,P中有限个元素的和组成实数集上的环R0;(注:R0由P张成)
3,H(R0)就是实数集的所有子集
先在环上定义测度
------------------------------------------------
环R上的集函数μ,满足非负性和可列可加性,则μ称为环R上的测度
定义集函数m,R0中某一元素E的函数值为E初等分解后所有线段的长度之和,可以证明m为R0上的测度