连续(Continuity)- 有界(Bounded) - 收敛(Convergence)

连续(Continuity)

                 弱                    ---->               强

-------------------------------------------------------------------------------------------------------------

continuity     ->    uniform continuity  -> absolute continutiy -> Lipschitz Continuity

连续函数                  一致连续                    绝对连续                   李普希兹连续

   1/x                     x

 

【uniform continutity】

a function f is uniformly continuous if it is possible to guarantee that f(x) and f(y) be as close to each other as we please by requiring only that x and y are sufficiently close to each other; unlike ordinary continuity, where the maximum distance between f(x) and f(y) may depend on x and y themselves.

https://en.wikipedia.org/wiki/Uniform_continuity

 

【absolute continutiy】

| f(x) | is uniformly continuous

https://en.wikipedia.org/wiki/Absolute_continuity

 

【Lipschitz continuity】

函数的变化率是有限的(如果函数可导,则导数有界)

简单来说,Lipschitz连续就类似,一块地不仅没有河流什么的玩意儿阻隔,而且这块地上没有特别陡的坡。其中最陡的地方有多陡呢?这就是所谓的李普希兹常数

https://en.wikipedia.org/wiki/Lipschitz_continuity

 

 

有界(Bounded)

bounded  ->  Uniform boundedness

the sequence of functions {fn|fn(x)=sin(nx)} is uniformly bounded

the sequence of functions {gn|gn(x)=nsin(x)} is not uniformly bounded

https://en.wikipedia.org/wiki/Uniform_boundedness

 

收敛(Convergence)

逐点收敛(pointwise convergence)  -> 一致收敛(uniform convergence)

【pointwise convergence】

The sequence fn(x) converges pointwise to the function f,  iff

for every x, limx+fn=f(x)

【uniform convergence】

the sequence functions Sn(x) is uniformly convergent:  if for every ϵ>0, there exists a number N, such that for all n>N, |fn(x)f(x)|<ϵ

https://en.wikipedia.org/wiki/Uniform_convergence

 

随机变量的收敛

研究一列随机变量是否会收敛到某个极限随机变量

https://en.wikipedia.org/wiki/Convergence_of_random_variables

 

【convergence in distribution】

  • the weakest form of convergence
  • related to central limit theorem

Definition:

A sequence X1, X2, ... of random variables is said to converge in distribution to a random variable X if

limnFn(x)=F(x) for every xR at which F is continues. (仅仅考虑F(x)连续的地方的分布函数值)

XndX

 

【Convergence in probability】

  • related to the weak law of large numbers
  • related to the consistent estimator

meanning:the probability of an “unusual” outcome becomes smaller and smaller as the sequence progresses.

Definition: A sequence {Xn} of random variables converges in probability towards the random variable X if for all ϵ>0limnPr(|XnX|>ϵ)=0

 XnpX

 

【Almost sure convergence】

 类似于函数列收敛中pointwise convergence,

 Definition:To say that the sequence Xn converges almost surely or almost everywhere or with probability 1 or strongly towards X means that,

Pr(limnXn=X)=1

 Xna.s.X

 

posted @   stone-stone-stone  阅读(2279)  评论(0编辑  收藏  举报
编辑推荐:
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
阅读排行:
· winform 绘制太阳,地球,月球 运作规律
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
点击右上角即可分享
微信分享提示