42. Trapping Rain Water
Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.
For example,
Given [0,1,0,2,1,0,1,3,2,1,2,1]
, return 6
.
The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped. Thanks Marcos for contributing this image!
思路分析:从左至右,针对当前的高度,往右寻找,如果有大于等于当前高度的元素,则说明水平线应该拉到这儿,否则,应该找到在后面元素中相对最大的元素(如果有很多,则应该返回第一个元素)。cur指向这个返回的元素。
class Solution { public: int next(vector<int>& height, int pos){//若果pos位置后面有大于等于height[pos]直接返回第一个这样的值的位置,否则,返回后续中(最大的高度并且是第一次出现)的下标位置 if (pos >= height.size() - 1)//遍历到最后一个元素时,就应该结束了,因为蓄不了水 return -1; int val = height[pos]; int start = height[pos + 1]; int res = pos + 1; for (int i = pos + 1; i<height.size(); i++) { if (height[i] >= val){//情况之一,后面元素存在大于等于当前元素高度的值 return i; } else if (height[i]>start){//情况之二,记录后面元素中相对最大的元素,并且是第一次出现的元素 res = i; start = height[i]; } } return res; } int trap(vector<int>& height) { if(height.size()==0) return 0; int result = 0; int start = 0; while (height[start] == 0){ start++; } while (start<height.size()-1){ int cur = next(height, start); int altitude = height[start]<height[cur] ? height[start] : height[cur]; for (int i = start + 1; i<cur; i++){ result += (altitude - height[i]); } start = cur; } return result; } };
手里拿着一把锤子,看什么都像钉子,编程界的锤子应该就是算法了吧!