cherrychenlee

导航

 

原文地址:https://www.jianshu.com/p/7ff6fd6fc99f

问题描述

图1 13-15
图2 16-20

程序实现

13-15

# coding:utf-8

# decision_tree.py

import numpy as np


def ReadData(dataFile):

    with open(dataFile, 'r') as f:
        lines = f.readlines()
        data_list = []
        for line in lines:
            line = line.strip().split()
            data_list.append([float(l) for l in line])
        dataArray = np.array(data_list)
        return dataArray


def sign(n):

    if(n>=0):
        return 1
    else:
        return -1


def GetSortedArray(dataArray,i):
     # 根据dataArray第i列的值对dataArray进行从小到大的排序
    data_list=dataArray.tolist()
    sorted_data_list=sorted(data_list,key=lambda x:x[i],reverse=False)
    sortedDataArray=np.array(sorted_data_list)
    return sortedDataArray


def GetSplitData(pred,dataArray):
    assert pred.shape[0]==dataArray.shape[0],"wrong shape of prediction!"
    falseData=[]
    trueData=[]
    for n in range(pred.shape[0]):
        if pred[n]==-1:
            falseData.append(dataArray[n,:])
        elif pred[n]==1:
            trueData.append(dataArray[n,:])
        else:
            print("wrong prediction!")
    return np.array(falseData),np.array(trueData)


def GetWeightedImpurity(pred,dataY):
    num_data = dataY.shape[0]
    num_false=(pred==-1).sum()
    num_true=(pred==1).sum()
    assert num_false+num_true==num_data,"wrong prediction!"
    if(num_false==0):
        falseGini=0
    else:
        falseFalse = ((pred + dataY) == -2).sum()
        falseTrue = num_false - falseFalse
        falseGini=1 - (falseFalse ** 2 + falseTrue ** 2) / num_false ** 2
    if(num_true==0):
        trueGini=0
    else:
        trueTrue = ((pred + dataY) == 2).sum()
        trueFalse = num_true - trueTrue
        trueGini=1-(trueFalse**2+trueTrue**2)/num_true**2
    return (num_false*falseGini+num_true*trueGini)/num_data


def decision_stump(dataArray):

    num_data=dataArray.shape[0]
    num_dim=dataArray.shape[1]-1
    min_e=np.inf
    min_s = np.inf
    min_d=np.inf
    min_theta = np.inf
    min_pred=np.zeros((num_data,))
    for d in range(num_dim):
        sortedDataArray=GetSortedArray(dataArray,d)
        d_min_e=np.inf
        d_min_s = np.inf
        d_min_theta = np.inf
        d_min_pred = np.zeros((num_data,))
        for s in [-1.0,1.0]:
            for i in range(num_data):
                if(i==0):
                    theta=-np.inf
                    pred=s*np.ones((num_data,))
                else:
                    if sortedDataArray[i-1][d]==sortedDataArray[i][d]:
                        continue
                    theta=(sortedDataArray[i-1][d]+sortedDataArray[i][d])/2
                    pred=np.zeros((num_data,))
                    for n in range(num_data):
                        pred[n]=s*sign(dataArray[n,d]-theta)
                d_now_e=GetWeightedImpurity(pred,dataArray[:,-1])
                if(d_now_e<d_min_e):
                    d_min_e=d_now_e
                    d_min_s=s
                    d_min_theta=theta
                    d_min_pred=pred
        if(d_min_e<min_e):
            min_e=d_min_e
            min_s=d_min_s
            min_d=d
            min_theta=d_min_theta
            min_pred=d_min_pred
    return min_s,min_d,min_theta,min_pred


paraDict={}
def decision_tree(id,dataArray,prune=False):
    num_data=dataArray.shape[0]
    num_dim=dataArray.shape[1]-1
    dataX=dataArray[:,:-1]
    dataY=dataArray[:,-1]
    if(dataY.min()==dataY.max()): # y相同
        return {id:dataY[0]}
    tmpX=np.concatenate([dataX[0,:].reshape((1,num_dim))]*num_data,axis=0)
    if(((dataX-tmpX)==0).all()): # x无法再分割
        return {id:sign(np.sum(dataY))}
    s,d,theta,pred=decision_stump(dataArray)
    paraDict[id]=[s,d,theta]
    falseArray,trueArray=GetSplitData(pred,dataArray)
    if prune:
        return {id:{-1:{id*2:sign(falseArray[:,-1].sum())},1:{id*2+1:sign(trueArray[:,-1].sum())}}}
    falseTree=decision_tree(id*2,falseArray)
    trueTree=decision_tree(id*2+1,trueArray)
    return {id:{-1:falseTree,1:trueTree}}


def GetZeroOneError(pred,dataY):
    return (pred!=dataY).sum()/dataY.shape[0]


def predict(treeDict,dataX):
    num_data=dataX.shape[0]
    pred=np.zeros((num_data,))
    for n in range(num_data):
        x=dataX[n,:]
        id=1
        tmp_dict=treeDict
        while(1):
            tmp_dict=tmp_dict[id]
            if(type(tmp_dict).__name__!="dict"):
                break
            paraList = paraDict[id]
            tmp_res=paraList[0]*sign(x[paraList[1]]-paraList[2])
            tmp_dict=tmp_dict[tmp_res]
            id=list(tmp_dict.keys())[0]
        pred[n]=tmp_dict
    return pred


def getNumLeafs(myTree):
    numLeafs = 0
    firstStr = list(myTree.keys())[0]
    secondDict = myTree[firstStr]
    if(type(secondDict).__name__=="dict"):
        numLeafs += getNumLeafs(secondDict[-1])
        numLeafs+=getNumLeafs(secondDict[1])
    else:
        numLeafs += 1
    return numLeafs


def getTreeDepth(myTree):
    maxDepth = 0
    firstStr = list(myTree.keys())[0]
    secondDict = myTree[firstStr]
    if(type(secondDict).__name__=="dict"):
            thisDepth = 1 + max(getTreeDepth(secondDict[-1]),getTreeDepth(secondDict[1]))
    else:
        thisDepth = 1
    if thisDepth > maxDepth: maxDepth = thisDepth
    return maxDepth


import matplotlib.pyplot as plt

decisionNode = dict(boxstyle="round", fc="0.8",pad=0.8)
leafNode = dict(boxstyle="circle", fc="0.8",pad=0.1)
arrow_args = dict(arrowstyle="<-")


def plotNode(nodeTxt, centerPt, parentPt, nodeType):
    createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction',
                            xytext=centerPt, textcoords='axes fraction',
                            va="center", ha="center", bbox=nodeType, arrowprops=arrow_args)
    return

def plotMidText(centerPt, parentPt, txtString):
    xMid = (parentPt[0] - centerPt[0]) / 2.0 + centerPt[0]
    yMid = (parentPt[1] - centerPt[1]) / 2.0 + centerPt[1]
    createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)
    return

def plotTree(myTree, centerPt, parentPt, nodeTxt):
    firstStr = list(myTree.keys())[0]
    if firstStr==1:
        createPlot.ax1.annotate(str(1), xy=parentPt, xycoords='axes fraction',
                                va="center", ha="center",bbox=decisionNode)
    elif firstStr in paraDict:
        plotNode(str(firstStr),centerPt,parentPt,decisionNode)
        plotMidText(centerPt,parentPt,nodeTxt)
    else:
        plotNode(str(myTree[firstStr]),centerPt,parentPt,leafNode)
        plotMidText(centerPt,parentPt,nodeTxt)
        return 
    secondDict = myTree[firstStr]
    if (type(secondDict).__name__ == "dict"):
        for key in secondDict.keys():
            plotTree(secondDict[key],(centerPt[0]+key*plotTree.xDict[firstStr],centerPt[1]-1.0/plotTree.totalD)
                     ,centerPt, str(key))
    return

def createPlot(inTree,savename="13.png"):
    fig = plt.figure(1, facecolor='white',figsize=(20,10))
    fig.clf()
    axprops = dict(xticks=[], yticks=[])
    createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)
    plotTree.totalW = float(getNumLeafs(inTree))
    plotTree.totalD = float(getTreeDepth(inTree))
    plotTree.xDict={}
    plotTree.xDict[1] = 4*1.0/plotTree.totalW
    for i in range(2,int(plotTree.totalD)+1):
        for j in range(2**(i-1),2**i):
            plotTree.xDict[j]=plotTree.xDict[2**(i-2)]/1.8
    plotTree(inTree,(0.43,1.0),(0.43, 1.0), '')
    plt.savefig(savename)
    return



if __name__=="__main__":

    dataArray=ReadData("hw7_train.dat")
    treeDict=decision_tree(1,dataArray)
    print(treeDict)

    # 13
    createPlot(treeDict)

    # 14
    pred=predict(treeDict,dataArray[:,:-1])
    ein=GetZeroOneError(pred,dataArray[:,-1])
    print("the Ein of the tree:",ein)

    # 15
    testArray=ReadData("hw7_test.dat")
    pred=predict(treeDict,testArray[:,:-1])
    eout=GetZeroOneError(pred,testArray[:,-1])
    print("the Eout of the tree:",eout)

16-20

# coding: utf-8

# random_forest.py


from  decision_tree import *


def bagging(N,dataArray):
    bagDataArray=[]
    for n in range(N):
        id=np.random.randint(low=0,high=dataArray.shape[0])
        bagDataArray.append(dataArray[id,:])
    return np.array(bagDataArray)


def random_forest(dataArray,iterations,prune=False):
    num_data=dataArray.shape[0]
    g_list=[]
    ein_g_list=[]
    ein_G_list=[]
    pred_G=np.zeros((num_data,))
    for t in range(iterations):
        print(t+1)
        bagDataArray=bagging(num_data,dataArray)
        treeDict=decision_tree(1,bagDataArray,prune)
        pred_g=predict(treeDict,dataArray[:,:-1])
        pred_G+=pred_g
        g_list.append(treeDict)
        ein_g_list.append(GetZeroOneError(pred_g,dataArray[:,-1]))
        tmpG=np.array(pred_G)
        for i in range(num_data):
            tmpG[i]=sign(tmpG[i])
        ein_G_list.append(GetZeroOneError(tmpG,dataArray[:,-1]))
    return g_list,ein_g_list,ein_G_list


def plot_line_chart(X=np.arange(0,3000,1).tolist(),Y=np.arange(0,3000,1).tolist(),nameX="t",nameY="Ein(gt)",saveName="16.png"):

    plt.figure(figsize=(30,12))
    plt.plot(X,Y,'b')
    plt.plot(X,Y,'ro')
    plt.xlim((X[0]-1,X[-1]+1))
    for (x,y) in zip(X,Y):
        if(x%100==0):
            plt.text(x+0.1,y,str(round(y,4)))
    plt.xlabel(nameX)
    plt.ylabel(nameY)
    plt.title(nameY+" versus "+nameX)
    plt.savefig(saveName)
    return


def plot_bar_chart(X=np.arange(0,3000,1).tolist(),Y=np.arange(0,300,1).tolist(),nameX="t",nameY="Ein(gt)",saveName="16.png"):
    plt.figure(figsize=(30,12))
    plt.bar(left=X,height=Y,width=1,align="center",yerr=0.000001)
    for (c,w) in zip(X,Y):
        if(c%100==0):
            plt.text(c,w*1.03,str(round(w,4)))
    plt.xlabel(nameX)
    plt.ylabel(nameY)
    plt.xlim(X[0]-1,X[-1]+1)
    plt.ylim(0,1)
    plt.title(nameY+" versus "+nameX)
    plt.savefig(saveName)
    return



if __name__ == "__main__":

    dataArray = ReadData("hw7_train.dat")
    g_list, ein_g_list, ein_G_list = random_forest(dataArray, 3000)

    # 16
    plot_bar_chart(Y=ein_g_list)

    # 17
    plot_line_chart(Y=ein_G_list, nameY="Ein(Gt)", saveName="17.png")

    testArray = ReadData("hw7_test.dat")
    num_test = testArray.shape[0]
    pred_G = np.zeros((num_test,))
    eout_G_list = []
    for t in range(3000):
        print(t+1)
        pred_g = predict(treeDict=g_list[t],dataX=testArray[:, :-1])
        pred_G += pred_g
        tmpG = np.array(pred_G)
        for i in range(num_test):
            tmpG[i] = sign(tmpG[i])
        eout_G_list.append(GetZeroOneError(tmpG, testArray[:, -1]))

    # 18
    plot_line_chart(Y=eout_G_list, nameY="Eout(Gt)", saveName="18.png")

    g_list, ein_g_list, ein_G_list = random_forest(dataArray, 3000, True)

    # 19
    plot_line_chart(Y=ein_G_list, nameY="Ein(Gt)", saveName="19.png")

    pred_G = np.zeros((num_test,))
    eout_G_list = []
    for t in range(3000):
        print(t+1)
        pred_g = predict(treeDict=g_list[t],dataX=testArray[:, :-1])
        pred_G += pred_g
        tmpG = np.array(pred_G)
        for i in range(num_test):
            tmpG[i] = sign(tmpG[i])
        eout_G_list.append(GetZeroOneError(tmpG, testArray[:, -1]))

    # 20
    plot_line_chart(Y=eout_G_list, nameY="Eout(Gt)", saveName="20.png")

运行结果

图3 13结果
图4 14-15结果
图5 16结果
图6 17结果
图7 18结果
图8 19结果
图9 20结果

posted on 2019-05-02 21:49  cherrychenlee  阅读(189)  评论(0编辑  收藏  举报