朴素贝叶斯

# coding:utf-8
from numpy import *

def loadDataSet():
    postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
                 ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                 ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
                 ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                 ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
                 ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
    classVec = [0,1,0,1,0,1]    #1 is abusive, 0 not
    return postingList,classVec;

def createVocabList(dataSet):
    vocabSet=set([]);
    for document in dataSet:
        vocabSet=vocabSet|set(document);
    return list(vocabSet);

def setOfWords2Vec(vocabList,inputSet):
    returnVec=[0]*len(vocabList);
    for word in inputSet:
        if word in vocabList:
            returnVec[vocabList.index(word)]=1;
        else:
            print "the word: %s is not in my Vocabluary!" % word;
    return returnVec;

def bagOfWords2VecMN(vocabList,inputSet):
    returnVec=[0]*len(vocabList);
    for word in inputSet:
        if word in vocabList:
            returnVec[vocabList.index(word)]+=1;
    return  returnVec;


def trainNB0(trainMatrix,trainCategory):
    numTrainDocs=len(trainMatrix);
    numWords=len(trainMatrix[0]);
    pAbusive=sum(trainCategory)/float(numTrainDocs);
    p0Num=ones(numWords);
    p1Num=ones(numWords);
    p0Denom=2.0;
    p1Denom=2.0;
    for i in range(numTrainDocs):
        if trainCategory[i]==1:
            p1Num+=trainMatrix[i];
            p1Denom+=sum(trainMatrix[i]);
        else:
            p0Num+=trainMatrix[i];
            p0Denom+=sum(trainMatrix[i]);
    p1Vect=log(p1Num/p1Denom);
    p0Vect=log(p0Num/p0Denom);
    return p0Vect,p1Vect,pAbusive;

def classifyNB(vec2Classify,p0Vec,p1Vec,pClass1):
    p1=sum(vec2Classify*p1Vec)+log(pClass1);
    p0=sum(vec2Classify*p0Vec)+log(1-pClass1);
    if p1>p0:
        return 1;
    else:
        return 0;

def testingNB():
    listOPosts,listClasses=loadDataSet();
    myVocabList=createVocabList(listOPosts);
    trainMat=[];
    for postinDoc in listOPosts:
        trainMat.append(setOfWords2Vec(myVocabList,postinDoc));
    p0V,p1V,pAb=trainNB0(array(trainMat),array(listClasses));
    testEntry=['love','my','dalmation'];
    thisDoc=array(setOfWords2Vec(myVocabList,testEntry));
    print testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb);
    testEntry = ['stupid','garbage'];
    thisDoc = array(setOfWords2Vec(myVocabList, testEntry));
    print testEntry, 'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb);

def textParse(bigString):
    import re
    listOfTokens=re.split(r'\W*',bigString);
    return  [word.lower() for word in listOfTokens if len(word) >2];

def spamTest():
    docList=[];classList=[];fullText=[];
    for i in range(1,26):
        wordList=textParse(open('email/spam/%d.txt' % i).read());
        docList.append(wordList);
        fullText.extend(wordList);
        classList.append(1);
        wordList=textParse(open('email/ham/%d.txt' % i).read());
        docList.append(wordList);
        fullText.extend(wordList);
        classList.append(0);
    vocabList=createVocabList(docList);
    trainingSet=range(50);testSet=[];
    for i in range(10):
        randIndex=int(random.uniform(0,len(trainingSet)));
        testSet.append(trainingSet[randIndex]);
        del(trainingSet[randIndex]);
    trainMat=[];trainClasses=[];
    for docIndex in trainingSet:
        trainMat.append(setOfWords2Vec(vocabList,docList[docIndex]));
        trainClasses.append(classList[docIndex]);
    p0V,p1V,pSpam=trainNB0(array(trainMat),array(trainClasses));
    errorCount=0;
    for docIndex in testSet:
        wordVector=setOfWords2Vec(vocabList,docList[docIndex]);
        if classifyNB(array(wordVector),p0V,p1V,pSpam)!= classList[docIndex]:
            errorCount+=1;
    print 'the error rate is: ',float(errorCount)/len(testSet);

def calcMostFreq(vocabList,fullText):
    import operator;
    freqDict={};
    for token in vocabList:
        freqDict[token]=fullText.count(token);
    sortedFreq=sorted(freqDict.iteritems(),key=operator.itemgetter(1),reverse=True);
    return sortedFreq[:30];


def localWords(feed1,feed0):
    import feedparser
    docList=[];classList=[];fullText=[];
    minLen=min(len(feed1['entries']),len(feed0['entries']));
    for i in range(minLen):
        wordList=textParse(feed1['entries'][i]['summary']);
        docList.append(wordList);
        fullText.extend(wordList);
        classList.append(1);
        wordList=textParse(feed0['entries'][i]['summary']);
        docList.append(wordList);
        fullText.extend(wordList);
        classList.append(0);
    vocabList=createVocabList(docList);
    top30Words=calcMostFreq(vocabList,fullText);
    for pairW in top30Words:
        if pairW[0] in vocabList:
            vocabList.remove(pairW[0]);
    trainingSet=range(2*minLen);testSet=[];
    for i in range(20):
        randIndex=int(random.uniform(0,len(trainingSet)));
        testSet.append(trainingSet[randIndex]);
        del(trainingSet[randIndex]);
    trainMat=[];trainClasses=[];
    for docIndex in trainingSet:
        trainMat.append(bagOfWords2VecMN(vocabList,docList[docIndex]));
        trainClasses.append(classList[docIndex]);
    p0V,p1V,pSpam=trainNB0(array(trainMat),array(trainClasses));
    errorCount=0;
    for docIndex in testSet:
        wordVector=bagOfWords2VecMN(vocabList,docList[docIndex]);
        if classifyNB(array(wordVector),p0V,p1V,pSpam)!= classList[docIndex]:
            errorCount+=1;
    print 'the error rate is: ',float(errorCount)/len(testSet);
    return vocabList,p0V,p1V;
View Code

 

posted on 2018-03-10 20:42  HelloWorld!--By-MJY  阅读(122)  评论(0编辑  收藏  举报

导航