sun.misc.Unsafe的理解
1、Unsafe类的作用
可以直接操作堆外内存,可以随意查看及修改JVM中运行时的数据结构,例如查看和修改对象的成员,Unsafe的操作粒度不是类,而是数据和地址。
另外,还支持一些CAS原子操作
2、获取Unsafe的对象
Unsafe不能直接通过new Unsafe()或者调用Unsafe.getUnsafe()获取,原因如下:
不能直接new Unsafe,原因是Unsafe被设计成单例模式,构造方法是private的
不能通过调用Unsafe.getUnsafe()获取,因为getUnsafe被设计成只能从引导类加载器(bootstrap class loader)加载,从getUnsafe的源码中也可以看出来,如下:
public static Unsafe getUnsafe() { //获得调用该方法的class对象 Class var0 = Reflection.getCallerClass(); //判断调用该方法的类是否是引导类加载器(bootstrap class loader) //如果不是的话,比如由AppClassLoader调用该方法,则抛出SecurityException异常 if (!VM.isSystemDomainLoader(var0.getClassLoader())) { throw new SecurityException("Unsafe"); } else { return theUnsafe; } } public static boolean isSystemDomainLoader(ClassLoader var0) { return var0 == null; }
虽然不能通过上边的方法得到Unsafe对象,但Unsafe类中有个私有的静态全局属性theUnsafe(Unsafe实例对象),通过反射,可以获取到该成员属性theUnsafe对应的Field对象,并将其设置为可访问,从而得到theUnsafe具体对象。
package concurrency; import java.lang.reflect.Field; import sun.misc.Unsafe; import sun.reflect.Reflection; public class Test { public static void main(String[] args) throws NoSuchFieldException, SecurityException, IllegalArgumentException, IllegalAccessException { // 通过反射得到theUnsafe对应的Field对象 Field field = Unsafe.class.getDeclaredField("theUnsafe"); // 设置该Field为可访问 field.setAccessible(true); // 通过Field得到该Field对应的具体对象,传入null是因为该Field为static的 Unsafe unsafe = (Unsafe) field.get(null); System.out.println(unsafe); } }
3、Unsafe类的Api
allocateInstance方法,不调用构造方法生成对象
本地方法,功能是生成一个对象实例,但是不会运行该对象的构造方法;由于natUnsafe.cc版本较老,没找到对应的c++实现;
/** Allocate an instance but do not run any constructor. Initializes the class if it has not yet been. */ public native Object allocateInstance(Class cls) throws InstantiationException;
例子,利用Unsafe的allocateInstance方法,在未调用构造方法的情况下生成了对象:
package concurrency; import java.lang.reflect.Field; import sun.misc.Unsafe; import sun.reflect.Reflection; class User { private String name = ""; private int age = 0; public User() { this.name = "test"; this.age = 22; } @Override public String toString() { return name + ": " + age; } } public class Test { public static void main(String[] args) throws NoSuchFieldException, SecurityException, IllegalArgumentException, IllegalAccessException, InstantiationException { // 通过反射得到theUnsafe对应的Field对象 Field field = Unsafe.class.getDeclaredField("theUnsafe"); // 设置该Field为可访问 field.setAccessible(true); // 通过Field得到该Field对应的具体对象,传入null是因为该Field为static的 Unsafe unsafe = (Unsafe) field.get(null); User user = (User) unsafe.allocateInstance(User.class); System.out.println(user); //dont invoke constructor, print null: 0 User userFromNormal = new User(); System.out.println(userFromNormal); //print test: 22 } }
objectFieldOffset方法,返回成员属性在内存中的地址相对于对象内存地址的偏移量
比较简单,就是返回成员属性内存地址相对于对象内存地址的偏移量,通过该方法可以计算一个对象在内存中的空间大小,方法是通过反射得到它的所有Field(包括父类继承得到的),找出Field中偏移量最大值,然后对该最大偏移值填充字节数即为对象大小;
关于该方法的使用例子可以看下面的修改内存数据的例子;
putLong,putInt,putDouble,putChar,putObject等方法,直接修改内存数据(可以越过访问权限)
这里,还有put对应的get方法,很简单就是直接读取内存地址处的数据,不做举例;
我们可以举个putLong(Object, long, long)方法详细看下其具体实现,其它的类似,先看Java的源码,没啥好看的,就声明了一个native本地方法:
三个参数说明下:
Object o//对象引用
long offset//对象内存地址的偏移量
long x//写入的数据
public native void putLong(Object o, long offset, long x);
还是看下natUnsafe.cc中的c++实现吧,很简单,就是计算要写入数据的内存地址,然后写入数据,如下:
void sun::misc::Unsafe::putLong (jobject obj, jlong offset, jlong value) { jlong *addr = (jlong *) ((char *) obj + offset);//计算要修改的数据的内存地址=对象地址+成员属性地址偏移量 spinlock lock;//自旋锁,通过循环来获取锁, i386处理器需要加锁访问64位数据,如果是int,则不需要改行代码 *addr = value;//往该内存地址位置直接写入数据 }
如下例子,即使User类的成员属性是私有的且没有提供对外的public方法,我们还是可以直接在它们的内存地址位置处写入数据,并成功;
import sun.misc.Unsafe; import java.lang.reflect.Field; public class User { private String name = "wangwp"; private int age = 12; private double height = 1.61; @Override public String toString() { return name + "," + age + "," + height; } public static void main(String[] args) throws NoSuchFieldException, IllegalAccessException { //通过反射得到unsafe对应的field对象 Field field = Unsafe.class.getDeclaredField("theUnsafe"); //设置field为可访问 field.setAccessible(true); //通过field得到该field对应的具体对象,传入null是因为该field为static的 Unsafe unsafe = (Unsafe) field.get(null); User user = new User(); System.out.println(user);//wangwp,12,1.61 //Class userClass = User.class; Class userClass = user.getClass(); Field name = userClass.getDeclaredField("name"); Field age = userClass.getDeclaredField("age"); Field height = userClass.getDeclaredField("height"); //直接往内存地址写数据 unsafe.putObject(user, unsafe.objectFieldOffset(name), "gaogao"); unsafe.putInt(user, unsafe.objectFieldOffset(age), 23); unsafe.putDouble(user, unsafe.objectFieldOffset(height), 1.98); System.out.println(user);//gaogao,23,1.98 } }
copyMemory、freeMemory
copyMemory:内存数据拷贝
freeMemory:用于释放allocateMemory和reallocateMemory申请的内存
CAS操作的方法,compareAndSwapInt,compareAndSwapLong等
看下natUnsafe.cc中的c++实现吧,加深理解,其实就是将内存值与预期值作比较,判断是否相等,相等的话,写入数据,不相等不做操作,返回旧数据;
static inline bool compareAndSwap (volatile jint *addr, jint old, jint new_val) { jboolean result = false; spinlock lock; if ((result = (*addr == old))) *addr = new_val; return result; }
J.U.C里原子类就是基于以上CAS操作实现的;
getLongVolatile/putLongVolatile等等方法
这类方法使用volatile语义去存取数据,我的理解就是各个线程不缓存数据,直接在内存中读取数据;
java一些使用Unsafe的类
- AbstractQueuedSynchronizer即同步器的抽象类,里面实现了线程的阻塞和唤醒:
LockSupport.park(this)和LockSupport.unpark(this)用于阻塞和唤醒线程。 - 如何去使用CAS实现一个线程安全的数据结构(类),直接上代码:
public class AtomicLong extends Number implements java.io.Serializable { private static final long serialVersionUID = 1927816293512124184L; // setup to use Unsafe.compareAndSwapLong for updates private static final Unsafe unsafe = Unsafe.getUnsafe(); private static final long valueOffset;
private volatile long value;
public final boolean compareAndSet(long expect, long update) {
return unsafe.compareAndSwapLong(this, valueOffset, expect, update);
}
很好奇compareAndSwapLong到底做了什么操作,首先分析一下这个方法的参数 compareAndSwapLong(Object obj, long offset, long expect, long update)
注意到counter声明为volatile,这意味着counter的值每次都是在内存中取,再看compareAndSet方法,每次修改值之前会设置当前字段值为预期值,value值每次取都和预期值相同才会执行。