打赏
摘要: 特开此文记录我说读 技术书单(闲书就不计入了), 一方面是鼓励和监督不断提升自我的过程;一方面是给大家做个参考~ 如果时间富裕也会写相关的读书笔记,加油!! name: deadline: 《C陷阱与缺陷》 2017-09-23 《neural-networks-and -deep-learning 阅读全文
posted @ 2018-01-15 21:40 巴尔扎克_S 阅读(251) 评论(0) 推荐(0) 编辑
摘要: 1. strcpychar *strcpy(char *destin, char *source);功能:将source指向的字符串拷到destin。 从结果可知确实将src的内容复制过去了,但是全部复制导致dest满了,使用不当就会出错! 2. strncpychar *strncpy(char 阅读全文
posted @ 2018-01-07 17:17 巴尔扎克_S 阅读(21312) 评论(0) 推荐(2) 编辑
摘要: 上一篇介绍了OPENCV中SVM的简单使用,以及自带的一个二分类问题。 例子中的标签是程序手动写的,输入也是手动加的二维坐标点。 对于复杂问题就必须使用数据集中的图片进行训练,标签使用TXT文件或程序设置好,下面以 IMM Face Database 中的人脸数据作为示例, 实现人脸的HOG特征提取 阅读全文
posted @ 2017-10-14 16:54 巴尔扎克_S 阅读(4980) 评论(0) 推荐(0) 编辑
摘要: 依据机器学习算法如何学习数据可分为3类:有监督学习:从有标签的数据学习,得到模型参数,对测试数据正确分类;无监督学习:没有标签,计算机自己寻找输入数据可能的模型;强化学习(reinforcement learning):计算机与动态环境交互,学习错误反馈达到更优的目的。 依据机器学习期望结果来分类: 阅读全文
posted @ 2017-10-13 17:40 巴尔扎克_S 阅读(16150) 评论(0) 推荐(1) 编辑
摘要: 灰度图像大多通过算子寻找边缘和区域生长融合来分割图像。 彩色图像增加了色彩信息,可以通过不同的色彩值来分割图像,常用彩色空间HSV/HSI, RGB, LAB等都可以用于分割! 笔者主要介绍inrange() 来划分颜色区域。先看看OpenCV的文档: C++: void inRange(Input 阅读全文
posted @ 2017-10-11 22:39 巴尔扎克_S 阅读(27599) 评论(2) 推荐(2) 编辑
摘要: 在激活层中,对输入数据进行激活操作(实际上就是一种函数变换),是逐元素进行运算的。从bottom得到一个blob数据输入,运算后,从top输入一个blob数据。在运算过程中,没有改变数据的大小,即输入和输出的数据大小是相等的。 输入:n*c*h*w 输出:n*c*h*w 常用的激活函数有sigmoi 阅读全文
posted @ 2017-10-06 20:14 巴尔扎克_S 阅读(618) 评论(0) 推荐(0) 编辑
摘要: 视觉层包括Convolution, Pooling, Local Response Normalization (LRN), im2col等层。 1、Convolution层: 就是卷积层,是卷积神经网络(CNN)的核心层。 层类型:Convolution lr_mult: 学习率的系数,最终的学习 阅读全文
posted @ 2017-10-06 19:42 巴尔扎克_S 阅读(280) 评论(0) 推荐(0) 编辑
摘要: 最近在复习OPENCV的知识,学习caffe的深度神经网络,正好想起以前做过的车牌识别项目,可以拿出来研究下 以前的环境是VS2013和OpenCV2.4.9,感觉OpenCV2.4.9是个经典版本啊!不过要使用caffe模型的话,还是要最新的OpenCV3.3更合适! 一、车牌图片库 以前也是网上 阅读全文
posted @ 2017-10-05 22:59 巴尔扎克_S 阅读(23542) 评论(22) 推荐(7) 编辑
摘要: caffe自带的例子有mnist和cifar10,cifar10和mnist的运行方式类型,下好图片数据文件后,训练例子中的模型,然后测试模型,也可以自己用图片进行预测分类(自己图片最好是cifar10训练的10种类型)。10种类型如下: 其他类型的图片也只能是错误识别,没有意义。 进入正题,跑完例 阅读全文
posted @ 2017-10-04 11:33 巴尔扎克_S 阅读(4808) 评论(3) 推荐(0) 编辑
摘要: 一. 装完caffe当然要来跑跑自带的demo,在examples文件夹下。 先来试试用于手写数字识别的mnist,在 examples/mnist/ 下有需要的代码文件,但是没有图像库。 mnist库有50000个训练样本,10000个测试样本,都是手写数字图像。 caffe支持的数据格式为:LM 阅读全文
posted @ 2017-10-03 14:49 巴尔扎克_S 阅读(2395) 评论(0) 推荐(0) 编辑