bzoj3677: [Apio2014]连珠线

Description

在列奥纳多·达·芬奇时期,有一个流行的童年游戏,叫做“连珠线”。不出所料,玩这个游戏只需要珠子和线,珠子从1到礼编号,线分为红色和蓝色。游戏 
开始时,只有1个珠子,而接下来新的珠子只能通过线由以下两种方式被加入: 
1.Append(w,杪):-个新的珠子w和一个已有的珠子杪连接,连接使用红线。 
2.Insert(w,u,v):-个新的珠子w加入到一对通过红线连接的珠子(u,杪) 
之间,并将红线改成蓝线。也就是将原来u连到1的红线变为u连到w的蓝线与W连到V的蓝线。 
无论红线还是蓝线,每条线都有一个长度。而在游戏的最后,将得到游戏的 
最后得分:所有蓝线的长度总和。 
现在有一个这个游戏的最终结构:你将获取到所有珠子之间的连接情况和所 
有连线的长度,但是你并不知道每条线的颜色是什么。 
你现在需要找到这个结构下的最大得分,也就是说:你需要给每条线一个颜 
色f红色或蓝色),使得这种连线的配色方案是可以通过上述提到的两种连线方式 
操作得到的,并且游戏得分最大。在本题中你只需要输出最大的得分即可。 

Input

 
第一行是一个正整数n,表示珠子的个数,珠子编号为1刭n。 
接下来n-l行,每行三个正整数ai,bi(l≤ai10000),表示有一条长度为ci的线连接了珠子ai和珠子bi。 

Output

输出一个整数,为游戏的最大得分。 

Sample Input

5
1 2
1 3 4 0
1 4 1 5
1 5 2 0

Sample Output

60



HINT

 

数据范围满足1≤n≤200000。 

 

题解:

假如确定了根,再通过若干操作得到这棵树,那么对于insert(w,u,v)操作,u,w,v必然为祖父节点-父节点-子节点的形式

然后可以O(n)的枚举根,设 f[i][0/1] 表示以i为根的子树,i是否为中转点的情况下,子树蓝边的最大总和是多少

这个可以O(1)的从儿子转移过来,所以dp的复杂度为O(n),但总复杂度为O(n2

我们可以在状态里多加一个0/1,即设 f[i][0/1][0/1] 表示以i为根的子树,以i的为子树里除去i以外是否有根节点,i是否为中转点的情况下,子树蓝边的最大总和是多少

当以i的为子树里除去i以外没有根节点,和前面的转移一样

否则,就会多一种转移,设根节点在j,就是可以有insert(i,j,x),其中x是i的另一个子节点

code:

 1 #include<cstdio>
 2 #include<iostream>
 3 #include<cmath>
 4 #include<cstring>
 5 #include<algorithm>
 6 using namespace std;
 7 char ch;
 8 bool ok;
 9 void read(int &x){
10     for (ok=0,ch=getchar();!isdigit(ch);ch=getchar()) if (ch=='-') ok=1;
11     for (x=0;isdigit(ch);x=x*10+ch-'0',ch=getchar());
12     if (ok) x=-x;
13 }
14 const int maxn=200005;
15 const int maxm=maxn*2;
16 const int inf=2147483647;
17 int n,a,b,c;
18 int f[maxn][2][2];
19 struct Graph{
20     int tot,now[maxn],son[maxm],pre[maxm],val[maxm];
21     int premax[maxn],sufmax[maxn],g[maxn];
22     void put(int a,int b,int c){pre[++tot]=now[a],now[a]=tot,son[tot]=b,val[tot]=c;}
23     void add(int a,int b,int c){put(a,b,c),put(b,a,c);}
24     void dfs(int u,int fa){
25         for (int p=now[u],v=son[p];p;p=pre[p],v=son[p]) if (v!=fa) dfs(v,u);
26         int cnt=0,sum=0; premax[0]=sufmax[0]=-inf;
27         for (int p=now[u],v=son[p];p;p=pre[p],v=son[p]) if (v!=fa)
28             g[v]=max(f[v][0][0],f[v][0][1]+val[p]),sum+=g[v],++cnt,premax[cnt]=sufmax[cnt]=f[v][0][0]+val[p]-g[v];
29         premax[cnt+1]=sufmax[cnt+1]=-inf;
30         for (int i=1;i<=cnt;i++) premax[i]=max(premax[i],premax[i-1]);
31         for (int i=cnt;i>=1;i--) sufmax[i]=max(sufmax[i],sufmax[i+1]);
32         f[u][0][0]=sum,f[u][0][1]=cnt?f[u][0][0]+premax[cnt]:-inf,f[u][1][1]=-inf;
33         for (int p=now[u],v=son[p],i=0;p;p=pre[p],v=son[p]) if (v!=fa){i++;
34             int res=max(premax[i-1],sufmax[i+1]),tmp=sum-g[v];
35             f[u][1][0]=max(f[u][1][0],max(f[v][1][1]+val[p]+tmp,max(f[v][0][0],f[v][1][0])+tmp+max(val[p]+res,0)));
36             f[u][1][1]=max(f[u][1][1],max(f[v][0][0],f[v][1][0])+val[p]+tmp);
37         }
38     }
39 }G;
40 int main(){
41     read(n);
42     for (int i=1;i<n;i++) read(a),read(b),read(c),G.add(a,b,c);
43     G.dfs(1,0);
44     printf("%d\n",max(f[1][1][0],f[1][0][0]));
45     return 0;
46 }

 

posted @ 2016-04-26 10:27  chenyushuo  阅读(507)  评论(0编辑  收藏  举报