君子博学而日参省乎己 则知明而行无过矣

博客园 首页 新随笔 联系 订阅 管理

引子:

我们平时总会有一个电话本记录所有朋友的电话,但是,如果有朋友经常联系,那些朋友的电话号码不用翻电话本我们也能记住,但是,如果长时间没有联系 了,要再次联系那位朋友的时候,我们又不得不求助电话本,但是,通过电话本查找还是很费时间的。但是,我们大脑能够记住的东西是一定的,我们只能记住自己 最熟悉的,而长时间不熟悉的自然就忘记了。

其实,计算机也用到了同样的一个概念,我们用缓存来存放以前读取的数据,而不是直接丢掉,这样,再次读取的时候,可以直接在缓存里面取,而不用再重 新查找一遍,这样系统的反应能力会有很大提高。但是,当我们读取的个数特别大的时候,我们不可能把所有已经读取的数据都放在缓存里,毕竟内存大小是一定 的,我们一般把最近常读取的放在缓存里(相当于我们把最近联系的朋友的姓名和电话放在大脑里一样)。现在,我们就来研究这样一种缓存机制。

LRU缓存:

LRU缓存利用了这样的一种思想。LRU是Least Recently Used 的缩写,翻译过来就是“最近最少使用”,也就是说,LRU缓存把最近最少使用的数据移除,让给最新读取的数据。而往往最常读取的,也是读取次数最多的,所 以,利用LRU缓存,我们能够提高系统的performance.

实现:

要实现LRU缓存,我们首先要用到一个类 LinkedHashMap。 用这个类有两大好处:一是它本身已经实现了按照访问顺序的存储,也就是说,最近读取的会放在最前面,最最不常读取的会放在最后(当然,它也可以实现按照插 入顺序存储)。第二,LinkedHashMap本身有一个方法用于判断是否需要移除最不常读取的数,但是,原始方法默认不需要移除(这 是,LinkedHashMap相当于一个linkedlist),所以,我们需要override这样一个方法,使得当缓存里存放的数据个数超过规定个 数后,就把最不常用的移除掉。LinkedHashMap的API写得很清楚,推荐大家可以先读一下。

要基于LinkedHashMap来实现LRU缓存,我们可以选择inheritance, 也可以选择 delegation, 我更喜欢delegation。基于delegation的实现已经有人写出来了,而且写得很漂亮,我就不班门弄斧了。代码如下:

import java.util.LinkedHashMap;
import java.util.Collection;
import java.util.Map;
import java.util.ArrayList;

/**
 * An LRU cache, based on <code>LinkedHashMap</code>.
 * 
 * <p>
 * This cache has a fixed maximum number of elements (<code>cacheSize</code>).
 * If the cache is full and another entry is added, the LRU (least recently
 * used) entry is dropped.
 * 
 * <p>
 * This class is thread-safe. All methods of this class are synchronized.
 * 
 * <p>
 * Author: Christian d'Heureuse, Inventec Informatik AG, Zurich, Switzerland<br>
 * Multi-licensed: EPL / LGPL / GPL / AL / BSD.
 */
public class LRUCache<K, V> {

    private static final float hashTableLoadFactor = 0.75f;

    private LinkedHashMap<K, V> map;
    private int cacheSize;

    /**
     * Creates a new LRU cache.
     * 
     * @param cacheSize
     *            the maximum number of entries that will be kept in this cache.
     */
    public LRUCache(int cacheSize) {
        this.cacheSize = cacheSize;
        int hashTableCapacity = (int) Math
                .ceil(cacheSize / hashTableLoadFactor) + 1;
        map = new LinkedHashMap<K, V>(hashTableCapacity, hashTableLoadFactor,
                true) {
            // (an anonymous inner class)
            private static final long serialVersionUID = 1;

            @Override
            protected boolean removeEldestEntry(Map.Entry<K, V> eldest) {
                return size() > LRUCache.this.cacheSize;
            }
        };
    }

    /**
     * Retrieves an entry from the cache.<br>
     * The retrieved entry becomes the MRU (most recently used) entry.
     * 
     * @param key
     *            the key whose associated value is to be returned.
     * @return the value associated to this key, or null if no value with this
     *         key exists in the cache.
     */
    public synchronized V get(K key) {
        return map.get(key);
    }

    /**
     * Adds an entry to this cache. The new entry becomes the MRU (most recently
     * used) entry. If an entry with the specified key already exists in the
     * cache, it is replaced by the new entry. If the cache is full, the LRU
     * (least recently used) entry is removed from the cache.
     * 
     * @param key
     *            the key with which the specified value is to be associated.
     * @param value
     *            a value to be associated with the specified key.
     */
    public synchronized void put(K key, V value) {
        map.put(key, value);
    }

    /**
     * Clears the cache.
     */
    public synchronized void clear() {
        map.clear();
    }

    /**
     * Returns the number of used entries in the cache.
     * 
     * @return the number of entries currently in the cache.
     */
    public synchronized int usedEntries() {
        return map.size();
    }

    /**
     * Returns a <code>Collection</code> that contains a copy of all cache
     * entries.
     * 
     * @return a <code>Collection</code> with a copy of the cache content.
     */
    public synchronized Collection<Map.Entry<K, V>> getAll() {
        return new ArrayList<Map.Entry<K, V>>(map.entrySet());
    }

    // Test routine for the LRUCache class.
    public static void main(String[] args) {
        LRUCache<String, String> c = new LRUCache<String, String>(3);
        c.put("1", "one"); // 1
        c.put("2", "two"); // 2 1
        c.put("3", "three"); // 3 2 1
        c.put("4", "four"); // 4 3 2
        if (c.get("2") == null)
            throw new Error(); // 2 4 3
        c.put("5", "five"); // 5 2 4
        c.put("4", "second four"); // 4 5 2
        // Verify cache content.
        if (c.usedEntries() != 3)
            throw new Error();
        if (!c.get("4").equals("second four"))
            throw new Error();
        if (!c.get("5").equals("five"))
            throw new Error();
        if (!c.get("2").equals("two"))
            throw new Error();
        // List cache content.
        for (Map.Entry<String, String> e : c.getAll())
            System.out.println(e.getKey() + " : " + e.getValue());
    }

} // end class LRUCache
// ------------------------------------------------------------------------------------------

代码出自:http://www.source-code.biz/snippets/java/6.htm


在博客 http://gogole.iteye.com/blog/692103 里,作者使用的是双链表 + hashtable 的方式实现的。如果在面试题里考到如何实现LRU,考官一般会要求使用双链表 + hashtable 的方式。 所以,我把原文的部分内容摘抄如下:


双链表 + hashtable实现原理:

将Cache的所有位置都用双连表连接起来,当一个位置被命中之后,就将通过调整链表的指向,将该位置调整到链表头的位置,新加入的Cache直接 加到链表头中。这样,在多次进行Cache操作后,最近被命中的,就会被向链表头方向移动,而没有命中的,而想链表后面移动,链表尾则表示最近最少使用的 Cache。当需要替换内容时候,链表的最后位置就是最少被命中的位置,我们只需要淘汰链表最后的部分即可。

 

我们首先定义entry, 每一个entry包括键(key)和 值 (value),而且,每一个 entry 都带有两个指针分别指向它们的前一个和后一个 entry.

package Cache;

public class Entry
{
    Entry prev;
    Entry next;
    Object value;
    Object key;
}

再定义一个统一的接口:

package Cache;

public interface MyCache
{
    public void addElement(Object key, Object value);
    public Object getElement(Object key);
    public boolean isExist(Object key);
    public int size();
    public int capacity();
    public void clear();
}

在Hashtable里,我们需要保存该Entry, 这个时候,我们用Entry的键作为Hashtable 里的键,而Hashtable的值呢就是Entry。

package Cache;

import java.util.*;

public class MyLRUCache implements MyCache
{
    private int cacheSize;
    private Hashtable<Object, Entry> nodes;
    private int currentSize;
    private Entry first;
    private Entry last;

    public MyLRUCache(int i)
    {
        currentSize = 0;
        cacheSize = i;
        nodes = new Hashtable<Object, Entry>(i);
    }

    @Override
    public synchronized void addElement(Object key, Object value)
    {
        Entry node = nodes.get(key);
        if (node == null)
        {
            if (currentSize >= cacheSize)
            {
                nodes.remove(last.key);
                removeLast();
            } else
                currentSize++;
            node = new Entry();
        }
        node.value = value;
        moveToHead(node);
        nodes.put(key, node);
    }

    private synchronized void moveToHead(Entry node)
    {
        if (node == first)
            return;
        if (node.prev != null)
            node.prev.next = node.next;
        if (node.next != null)
            node.next.prev = node.prev;
        if (last == node)
            last = node.prev;
        if (first != null)
        {
            node.next = first;
            first.prev = node;
        }
        first = node;
        node.prev = null;
        if (last == null)
            last = first;

    }

    private synchronized void removeLast()
    {
        if (last != null)
        {
            if (last.prev != null)
                last.prev.next = null;
            else
                first = null;
            last = last.prev;
        }
    }

    @Override
    public synchronized Entry getElement(Object key)
    {
        Entry node = nodes.get(key);
        if (node != null)
        {
            moveToHead(node);
            return node;
        } else
            return null;
    }

    @Override
    public boolean isExist(Object key)
    {
        Entry node = nodes.get(key);
        if (node != null)
            return true;
        return false;
    }

    @Override
    public int size()
    {
        return currentSize;
    }

    @Override
    public int capacity()
    {
        return cacheSize;
    }

    @Override
    public void clear()
    {
        first = null;
        last = null;
        currentSize = 0;

    }

}

 

转载 http://blog.csdn.net/beiyeqingteng/article/details/7010411

http://www.cnblogs.com/Bob-FD/archive/2013/04/23/3038749.html

posted on 2013-11-24 16:30  刺猬的温驯  阅读(350)  评论(0编辑  收藏  举报