君子博学而日参省乎己 则知明而行无过矣

博客园 首页 新随笔 联系 订阅 管理

转载:http://www.ituring.com.cn/article/986

译者按:今天在翻译时无意中搜索到StackOverflow中的这篇文章(问答),觉得有必要翻译出来。不仅因为文章本身写得精彩,更重要的是它昭示了一个写文章(特别是技术文章)的重要法则——5W1H。 原文在此 How does database indexing work?(作者:Xenph Yan

问:随着数据库的增大,既然索引的作用那么重要,有谁能抛开具体的数据库来解释一下索引的工作原理?

答:(我自己来回答这个问题,:o-))

为什么需要索引

数据在磁盘上是以块的形式存储的。为确保对磁盘操作的原子性,访问数据的时候会一并访问所有数据块。磁盘上的这些数据块与链表类似,即它们都包含一个数据段和一个指针,指针指向下一个节点(数据块)的内存地址,而且它们都不需要连续存储(即逻辑上相邻的数据块在物理上可以相隔很远)。

鉴于很多记录只能做到按一个字段排序,所以要查询某个未经排序的字段,就需要使用线性查找,即要访问N/2个数据块,其中N指的是一个表所涵盖的所有数据块。如果该字段是非键字段(也就是说,不包含唯一值),那么就要搜索整个表空间,即要访问全部N个数据块。

然而,对于经过排序的字段,可以使用二分查找,因此只要访问log2 N个数据块。同样,对于已经排过序的非键字段,只要找到更大的值,也就不用再搜索表中的其他数据块了。这样一来,性能就会有实质性的提升。

什么是索引

索引是对记录按照多个字段进行排序的一种方式。对表中的某个字段建立索引会创建另一种数据结构,其中保存着字段的值,每个值又指向与它相关的记录。这种索引的数据结构是经过排序的,因而可以对其执行二分查找。

索引的缺点是占用额外的磁盘空间。因为索引保存在MyISAM数据库中,所以如果为同一个表中的很多字段都建立索引,那这个文件可能会很快膨胀到文件系统规定的上限。

索引的原理

首先,来看一个示例数据库表的模式:

字段名数据类型在磁盘上的大小
id (Primary key)Unsigned INT     4字节
firstName          Char(50)50字节
lastName           Char(50)50字节
emailAddress       Char(100)100字节

注意:这里用char而不用varchar是为了精确地描述数据占用磁盘的大小。这个示例数据库中包含500万行记录,而且没有建立索引。接下来我们就分析针对这个表的两个查询:一个查询使用id(经过排序的键字段),另一个查询使用firstName(未经排序的非键字段)。

示例分析一

对于这个拥有r = 5 000 000条记录的示例数据库,在磁盘上要为每条记录分配 R = 204字节的固定存储空间。这个表保存在MyISAM数据库中,而这个数据库默认的数据库块大小为 B = 1024字节。于是,我们可计算出这个表的分块因数为 bfr = (B/R) = 1024/204 = 5,即磁盘上每个数据块保存5条记录。那么,保存整个表所需的数据块数就是 N = (r/bfr) = 5000000/5 = 1 000 000。

使用线性查找搜索id字段——这个字段是键字段(每个字段的值唯一),需要访问 N/2 = 500 000个数据块才能找到目标值。不过,因为这个字段是经过排序的,所以可以使用二分查找法,而这样平均只需要访问log2 1000000 = 19.93 = 20 个块。显然,这会给性能带来极大的提升。

再来看看firstName字段,这个字段是未经排序的,因此不可能使用二分查找,况且这个字段的值也不是唯一的,所以要从表的开头查找末尾,即要访问 N = 1 000 000个数据块。这种情况通过建立索引就能得到改善。

如果一条索引记录只包含索引字段和一个指向原始记录的指针,那么这条记录肯定要比它所指向的包含更多字段的记录更小。也就是说,索引本身占用的磁盘空间比原来的表更少,因此需要遍历的数据块数也比搜索原来的表更少。以下是firstName字段索引的模式:

字段名数据类型在磁盘上的大小
firstName     Char(50)50字节(记录指针)Special4字节

注意:在MySQL中,根据表的大小,指针的大小可能是2、3、4或5字节。

示例分析二

对于这个拥有r = 5 000 000条记录的示例数据库,每条索引记录要占用 R = 54字节磁盘空间,而且同样使用默认的数据块大小 B = 1024字节。那么索引的分块因数就是 bfr = (B/R) = 1024/54 = 18。最终这个表的索引需要占用 N = (r/bfr) = 5000000/18 = 277 778个数据块。

现在,再搜索firstName字段就可以使用索引来提高性能了。对索引使用二分查找,需要访问 log2 277778 = 18.09 = 19个数据块。再加上为找到实际记录的地址还要访问一个数据块,总共要访问 19 + 1 = 20个数据块,这与搜索未索引的表需要访问277 778个数据块相比,不啻于天壤之别。

什么时候用索引

创建索引要额外占用磁盘空间(比如,上面例子中要额外占用277 778个数据块),建立的索引太多可能导致磁盘空间不足。因此,在建立索引时,一定要慎重选择正确的字段。

由于索引只能提高搜索记录中某个匹配字段的速度,因此在执行插入和删除操作的情况下,仅为输出结果而为字段建立索引,就纯粹是浪费磁盘空间和处理时间了;这种情况下不用建立索引。另外,由于二分查找的原因,数据的基数性(cardinality)或唯一性也非常重要。对基数性为2的字段建立索引,会将数据一分为二,而对基数性为1000的字段,则同样会返回大约1000条记录。在这么低的基数性下,索引的效率将减低至线性查找的水平,而查询优化器会在基数性大于记录数的30%时放弃索引,实际上等于索引纯粹只会浪费空间。

查询优化器的原理

查询优化中最核心的问题就是精确估算不同查询计划的成本。优化器在估算查询计划的成本时,会使用一个数学模型,该模型又依赖于对每个查询计划中涉及的最大数据量的基数性(或者叫重数)的估算。而对基数性的估算又依赖于对查询中谓词选择因数(selection factor of predicates)的估算。过去,数据库系统在估算选择性时,要使用每个字段中值的分布情况的详尽统计信息,比如直方图。这种技术对于估算孤立谓词的选择符效果很好。然而,很多查询的谓词是相互关联的,例如 select count(*) from R where R.make='Honda' and R.model='Accord'。查询谓词经常会高度关联(比如,model='Accord'的前提条件是make='Honda'),而估计这种关联的选择性非常困难。查询优化器之所以会选择低劣的查询计划,一方面是因为对基数性估算不准,另一方面就是因为遗漏了很多关联性。而这也是为什么数据库管理员应该经常更新数据库统计信息(特别是在重要的数据加载和卸载之后)的原因。(译自维基百科:http://en.wikipedia.org/wiki/Query_optimizer。)

posted on 2013-07-13 02:43  刺猬的温驯  阅读(119)  评论(0编辑  收藏  举报