把博客园图标替换成自己的图标
把博客园图标替换成自己的图标end

【洛谷5251】[LnOI2019] 第二代图灵机(线段树+ODT)

点此看题面

大致题意: 有单点修改数字和区间着色两种修改操作,询问你某段区间内包含所有颜色且数字和最小的子区间的数字和,或某段区间内没有重复颜色且数字和最大的子区间的数字和。数据随机。

\(ODT\)维护颜色

看到区间着色且题目中强调数据随机,容易想到使用\(ODT\)去求解。

于是,我们就可以考虑用\(ODT\)来对颜色进行维护。

线段树维护数字和

但是考虑到要求区间数字和,\(ODT\)就很难搞了。

考虑到我们其实可以对于每个询问,每次找到一个合法区间再询问数字和更新答案。

也就是说,可以把维护颜色和维护数字和分开。

那维护数字和自然可以用线段树喽。

其实本来用树状数组似乎更优,但这题由于写法问题可能还会需要求区间\(Min\)\(Max\),树状数组搞起来就很吃力了。

处理询问

以上大致介绍了,可以用线段树维护数字和,\(ODT\)维护颜色。

接下来,再具体介绍一下如何去处理询问。

考虑到这两种询问实际上都具有单调性,因此可以直接用双指针搞。

我们枚举右端点,然后移动左端点。

  • 对于第一种询问,我们需要在保证颜色数量等于\(c\)的情况下才能移动左端点,然后在移动的同时更新答案(不然统计答案的过程会略显麻烦)。

    \(c=1\)的情况可能要特判,直接输出这段区间的最小值。

  • 对于第二种询问,我们只需在出现不合法情况,即出现重复颜色时移动左端点。考虑我们此时刚把右端点的颜色加入,若出现重复颜色,必然是由右端点导致的,因此不断移动左端点直至右端点所属颜色出现次数为\(1\)即可。

    但注意,在处理第二种询问时,一旦出现右端点\(Size>1\)的情况,我们在统计完其答案后,需将左端点移动到右端点的位置上,不然就会出现重复颜色。

    同理,在统计第二种询问的答案时,要求左端点的右边界右端点的左边界之间的区间和,不然同样会出现重复颜色。

    而且,在第二种情况时容易漏考虑单个颜色的贡献,因此要初始化\(res\)为整段区间的\(Max\)

大致就是这些吧。

代码

#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define N 100000
#define INF 1e9
#define Gmax(x,y) (x<(y)&&(x=(y)))
#define Gmin(x,y) (x>(y)&&(x=(y)))
using namespace std;
int n,c,a[N+5];
class FastIO
{
    private:
        #define FS 100000
        #define tc() (A==B&&(B=(A=FI)+fread(FI,1,FS,stdin),A==B)?EOF:*A++)
        #define pc(c) (C^FS?FO[C++]=c:(fwrite(FO,1,C,stdout),FO[(C=0)++]=c))
        #define tn (x<<3)+(x<<1)
        #define D isdigit(c=tc())
        int T,C;char c,*A,*B,FI[FS],FO[FS],S[FS];
    public:
        I FastIO() {A=B=FI;}
        Tp I void read(Ty& x) {x=0;W(!D);W(x=tn+(c&15),D);} 
        Tp I void write(Ty x) {x<0&&(pc('-'),x=-x);W(S[++T]=x%10+48,x/=10);W(T) pc(S[T--]);}
        Ts I void read(Ty& x,Ar&... y) {read(x),read(y...);}
        Tp I void writeln(Con Ty& x) {write(x),pc('\n');}
        I void clear() {fwrite(FO,1,C,stdout),C=0;}
}F;
class SegmentTree//线段树
{
    private:
        #define STO l,hl,rt<<1
        #define ORZ hl+1,r,rt<<1|1
        #define PU(x) (O[x]=O[x<<1]+O[x<<1|1])
        int n,v[N+5];
        struct Interval//维护区间信息
        {
            int S,Mx,Mn;I Interval(CI s=0,CI mx=-INF,CI mn=INF):S(s),Mx(mx),Mn(mn){}
            I Interval operator + (Con Interval& t) Con {return Interval(S+t.S,max(Mx,t.Mx),min(Mn,t.Mn));}
        }O[N<<2];
        I void Build(CI l,CI r,CI rt)//建树
        {
            if(!(l^r)) return (void)(O[rt]=Interval(v[l],v[l],v[l]));
            RI hl=l+r>>1;Build(STO),Build(ORZ),PU(rt);
        }
        I int qsu(CI l,CI r,CI rt,CI ql,CI qr)//询问区间和
        {
            if(ql<=l&&r<=qr) return O[rt].S;RI hl=l+r>>1;
            return (ql<=hl?qsu(STO,ql,qr):0)+(qr>hl?qsu(ORZ,ql,qr):0);
        }
        I int qmx(CI l,CI r,CI rt,CI ql,CI qr)//询问区间最大值
        {
            if(ql<=l&&r<=qr) return O[rt].Mx;RI hl=l+r>>1,t,res=-INF;
            return ql<=hl&&(t=qmx(STO,ql,qr),Gmax(res,t)),qr>hl&&(t=qmx(ORZ,ql,qr),Gmax(res,t)),res;
        }
        I int qmn(CI l,CI r,CI rt,CI ql,CI qr)//询问区间最小值
        {
            if(ql<=l&&r<=qr) return O[rt].Mn;RI hl=l+r>>1,t,res=INF;
            return ql<=hl&&(t=qmn(STO,ql,qr),Gmin(res,t)),qr>hl&&(t=qmn(ORZ,ql,qr),Gmin(res,t)),res;
        }
    public:
        I void Init(CI x,int* s) {for(RI i=1;i<=x;++i) v[i]=s[i];Build(1,n=x,1);}
        I void Update(CI x,CI y)//单点修改(这里使用非递归写法)
        {
            RI l=1,r=n,rt=1,hl;W(l^r) hl=l+r>>1,x<=hl?(r=hl,rt<<=1):(l=hl+1,(rt<<=1)|=1);
            O[rt]=Interval(y,y,y);W(rt>>=1) PU(rt);
        }
        I int QSum(CI x,CI y) {return qsu(1,n,1,x,y);}
        I int QMax(CI x,CI y) {return qmx(1,n,1,x,y);}
        I int QMin(CI x,CI y) {return qmn(1,n,1,x,y);}
}T;
class ODT
{
    private:
        #define IT set<Il>::iterator
        #define ins insert
        #define era erase
        #define fir first
        #define LB lower_bound
        #define add(x) (!cnt[x]++&&++tot)
        #define del(x) (!--cnt[x]&&--tot)
        int cnt[N+5];
        struct Il//维护区间信息
        {
            int l,r,v;I Il(CI x=0,CI y=0,CI p=0):l(x),r(y),v(p){}
            I bool operator < (Con Il& t) Con {return l<t.l;}
        };set<Il> S;
        I IT Sp(CI x)//分裂操作
        {
            IT t;if((t=S.LB(Il(x)))!=S.end()&&!(t->l^x)) return t;
            RI l=(--t)->l,r=t->r,v=t->v;S.era(t),S.ins(Il(l,x-1,v));
            return S.ins(Il(x,r,v)).fir;
        }
    public:
        I void Init(CI x,int* s)//初始化节点信息 
        {
            for(RI i=(s[0]=s[x+1]=-1,1),t=0;i<=x+2;++i) 
                s[i]^s[i-1]&&(S.insert(Il(t,i-1,s[i-1])),t=i);
        }
        I void Assign(CI x,CI y,CI v)//推平操作
        {
            IT tr=Sp(y+1),tl=Sp(x);S.era(tl,tr),S.ins(Il(x,y,v));
        }
        I int Q1(CI x,CI y)//处理第一种询问
        {
            if(!(c^1)) return T.QMin(x,y);//特判c=1
            memset(cnt,0,sizeof(cnt));IT tr=Sp(y+1),tl=Sp(x),ti=tl;RI t,res=INF,tot=0;//初始化
            W(ti!=tr) {add(ti->v);W(!(tot^c)) t=T.QSum(tl->r,ti->l),Gmin(res,t),del((tl++)->v);++ti;}//移动右端点,在保证颜色数量等于c的情况下才能移动左端点,然后在移动的同时更新答案
            return res==INF?-1:res;//判断是否无解,无解返回-1
        }
        I int Q2(CI x,CI y)//处理第二种询问
        {
            memset(cnt,0,sizeof(cnt));IT tr=Sp(y+1),tl=Sp(x),ti=tl;RI t,res=T.QMax(x,y);//初始化
            W(ti!=tr)
            {
                ++cnt[ti->v];W(ti!=tl&&cnt[ti->v]>1) --cnt[(tl++)->v];//不断移动左端点直至右端点所属颜色出现次数为1
                ti!=tl&&(t=T.QSum(tl->r,ti->l),Gmax(res,t));//更新答案
                if(ti->l^ti->r) W(ti!=tl) --cnt[(tl++)->v];++ti;//当出现右端点Size>1的情况,将左端点移动到右端点的位置上
            }return res;//返回答案
        }
}O;
int main()
{
    RI Qtot,i,op,x,y,z;for(F.read(n,Qtot,c),i=1;i<=n;++i) F.read(a[i]);T.Init(n,a);//读入数据
    for(i=1;i<=n;++i) F.read(a[i]);O.Init(n,a);W(Qtot--)
    {
        switch(F.read(op,x,y),op)//处理操作
        {
            case 1:T.Update(x,y);break;case 2:F.read(z),O.Assign(x,y,z);break;
            case 3:F.writeln(O.Q1(x,y));break;case 4:F.writeln(O.Q2(x,y));break;
        }
    }return F.clear(),0;
}
posted @ 2019-03-19 22:12  TheLostWeak  阅读(317)  评论(0编辑  收藏  举报