【洛谷1993】小K的农场(差分约束系统模板题)
大致题意: 给你若干组不等式,请你判断它们是否有解。
差分约束系统
看到若干组不等式,应该很容易想到差分约束系统吧。
- \(A-B≥C\):转换可得\(A-B≥C\)
- \(A-B≤C\):转换可得\(B-A≥-C\)
- \(A=B\):可拆得\(A-B≥0\)和\(B-A≥0\)
题意转化
现在我们要考虑,在什么样的情况下,差分约束系统会无解。
很简单,如果我们从跑最长路的角度出发,只要出现了正环,就说明无解。
这样一来,原题就变成了一道判正环的题目。
\(SPFA\)判正环应该都会的吧......
代码
#include<bits/stdc++.h>
#define max(x,y) ((x)>(y)?(x):(y))
#define min(x,y) ((x)<(y)?(x):(y))
#define abs(x) ((x)<0?-(x):(x))
#define LL long long
#define ull unsigned long long
#define swap(x,y) (x^=y,y^=x,x^=y)
#define tc() (A==B&&(B=(A=ff)+fread(ff,1,100000,stdin),A==B)?EOF:*A++)
#define N 100000
#define M 100000
#define add(x,y,z) (e[++ee].to=y,e[ee].nxt=lnk[x],e[lnk[x]=ee].val=z)
char ff[100000],*A=ff,*B=ff;
using namespace std;
int n,m,limit,ee=0,lnk[N+5],Inqueue[N+5],vis[N+5];
LL dis[N+5];
struct edge
{
int to,nxt,val;
}e[2*M+5];
deque<int> q;
inline void read(int &x)
{
x=0;static char ch;
while(!isdigit(ch=tc()));
while(x=(x<<3)+(x<<1)+ch-48,isdigit(ch=tc()));
}
inline void write(LL x)
{
if(x>9) write(x/10);
putchar(x%10+'0');
}
inline bool SPFA(int x)//SPFA判正环
{
register int i,k;dis[x]=0,Inqueue[x]=vis[x]=1,q.push_front(x);
while(!q.empty())
{
for(Inqueue[k=q.front()]=0,q.pop_front(),i=lnk[k];i;i=e[i].nxt)
{
static int v;
if(dis[k]+e[i].val>dis[v=e[i].to])
{
dis[v]=dis[k]+e[i].val;
if(!Inqueue[v])
{
if((++vis[v])>=n) return false;
if(q.empty()||dis[v]>dis[q.front()]) q.push_front(v);
else q.push_back(v);
Inqueue[v]=1;
}
}
}
}
return true;
}
int main()
{
freopen("a.in","r",stdin);
register int i,op,x,y,z;
for(read(n),read(m),i=1;i<=m;++i)
{
read(op),read(x),read(y);
if(op<3) read(z);
switch(op)
{
case 1:add(y,x,z);break;//第一种情况可以转化为x-y≥z,因此从y向x建一条边权为z的有向边
case 2:add(x,y,-z);break;//第二种情况可以转化为y-x≥-z,因此从x向y建一条边权为-z的有向边
case 3:add(x,y,0),add(y,x,0);break;//第三种情况可以转化为x-y≥0和y-x≥0,因此分别从x向y和从y向x建一条边权为0的有向边
}
}
for(i=1;i<=n;++i) if(!vis[i]&&!SPFA(i)) return puts("No"),0;//如果某个联通块内出现了正环,输出No并退出程序
return puts("Yes"),0;//输出Yes
}
待到再迷茫时回头望,所有脚印会发出光芒