【CF660E】Different Subsets For All Tuples(组合数学)
大致题意: 有一个长度为\(n\)的数列,每个位置上数字的值在\([1,m]\)范围内,则共有\(m^n\)种可能的数列。分别求出每个数列中本质不同的子序列个数,然后求和。
一些分析
首先,我们单独考虑空序列的个数\(m^n\),然后接下来就可以只考虑非空序列的个数了。
假设有一个长度为\(i\)的子序列(\(1\le i\le n\)),且其在序列中的位置分别为\(pos_1,pos_2,...,pos_i\),值分别为\(val_1,val_2,...,val_i\)。
则我们强制在\(1\sim pos_1-1\)范围内不能出现\(val_1\),\(pos_1+1\sim pos_2-1\)范围内不能出现\(val_2\),以此类推。
所以,在前\(pos_i\)个位置中,除\(pos_{1\sim i}\)这\(i\)个位置填\(val_{i\sim i}\)外,如上所述,其余\(pos_i-i\)个位置各有\(m-1\)种填法。
而在第\(pos_i\)个位置之后就可以随便填了,每个位置都有\(m\)种填法。
推式子
通过之前的分析,于是得到式子如下:
对于这个式子的解释:
首先,用\(i\)枚举子序列长度,而长度为\(i\)的子序列共有\(m^i\)种可能。
接下来\(j\)枚举\(pos_i\),而\(pos_{1\sim i-1}\)依次选择\([1,pos_i-1]\)(即这里的\([1,j-1]\))这个范围内的任意位置都是合法的,就相当于在\(j-1\)个位置中选择\(i-1\)个位置,方案数就是\(C_{j-1}^{i-1}\)。
从前文可得,\(pos_i-i\)(即这里的\(j-i\))个位置有\(m-1\)种填法,\(n-pos_i\)(即这里的\(n-j\))个位置有\(m\)种填法。
于是便得到上述式子。
然后就是化简:
先移项,把\(m^i\)移进去得到:
改变枚举顺序,得到:
观察到组合数中的\(i-1\)和\(j-1\),不难想到直接将枚举的\(i,j\)减\(1\),即:
然后我们可以化简一下系数,发现这些\(1\)和\(-1\)恰好抵消了,得到:
然后我们拎出\(m^{n-j}\),就可以得到:
那这样有什么好处呢?
回想一下二项式定理:\((x+y)^n=\sum_{i=0}^{n-1}x^iy^{n-i}\)。
这似乎与上面式子的后半部分有几分相似。
于是就可以化简得到:
这个式子可以\(O(nlogn)\)快速幂计算,也可以直接\(O(n)\)计算。
总而言之,可以过了。
代码
#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define N 1000000
#define X 1000000007
#define Qinv(x) Qpow(x,X-2)
#define Inc(x,y) ((x+=(y))>=X&&(x-=X))
using namespace std;
int n,m;
I int Qpow(RI x,RI y) {RI t=1;W(y) y&1&&(t=1LL*t*x%X),x=1LL*x*x%X,y>>=1;return t;}//快速幂
int main()
{
RI i,ans,p1,p2,b1,b2;
scanf("%d%d",&n,&m),ans=p1=Qpow(m,n),p2=1,b1=Qinv(m),b2=(1LL*2*m-1)%X;//初始化
for(i=0;i^n;++i) Inc(ans,1LL*p1*p2%X),p1=1LL*p1*b1%X,p2=1LL*p2*b2%X;//O(n)计算答案
return printf("%d",ans),0;//输出答案
}