【BZOJ4766】文艺计算姬(prufer序列)
大致题意: 让你求一个两边各有\(n\)和\(m\)个点的完全二分图有多少个生成树。
\(prufer\)序列
这是一道比较经典的利用\(prufer\)序列结论求解答案的计数题。
大致思路
考虑一张二分图求解\(prufer\)序列,由于\(prufer\)序列求解时最后剩下的两个点必定有边相连,因此这两个点必定在二分图两侧。
由于\(prufer\)序列中记录的是每个点相邻的点,也就是说,删去一个左边的点,则就会有一个右边的点被加入\(prufer\)序列。
因此,序列中共会有\(n-1\)个右边的点和\(m-1\)个左边的点。
所以答案就是\(m^{n-1}\cdot n^{m-1}\)。
代码
#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename Ts>
#define Reg register
#define RI Reg int
#define RL Reg LL
#define Con const
#define CI Con int&
#define CL Con LL&
#define I inline
#define W while
#define LL long long
#define Inc(x,y) ((x+=(y))>=X&&(x-=X))
#define Qinv(x) Qpow(x,X-2)
using namespace std;
LL n,m,X;
I LL Qmul(RL x,RL y) {RL t=0;W(y) y&1&&Inc(t,x),(x<<=1)>=X&&(x-=X),y>>=1;return t;}//快速乘
I LL Qpow(RL x,RL y) {RL t=1;W(y) y&1&&(t=Qmul(t,x)),x=Qmul(x,x),y>>=1;return t;}//快速幂
I LL XSum(CL x,CL y) {return x+y>=X?x+y-X:x+y;}//取模优化求和
int main()
{
scanf("%lld%lld%lld",&n,&m,&X),printf("%lld",Qmul(Qpow(n,m-1),Qpow(m,n-1)));//计算并输出答案
return 0;
}
待到再迷茫时回头望,所有脚印会发出光芒