【BZOJ1057】[ZJOI2007] 棋盘制作(单调栈的运用)
大致题意: 给你一个\(N*M\)的\(01\)矩阵,要求你分别求出最大的\(01\)相间的正方形和矩形(矩形也可以是正方形),并输出其面积。
题解
这题第一眼看去没什么思路,仔细想想,能发现这道题其实是一道单调栈的运用题。
我们可以先对矩阵上的每一个元素进行预处理,求出以其为底的最长的 \(01\)柱。
然后对矩形(正方形)的下界进行枚举,即枚举每一行作为矩形(正方形)的下边。
此时,我们发现,只要使连续的01柱连续距离和这些\(01\)柱中最短的\(01\)柱的高度的乘积最大,就可以求出最大的矩形(最大的正方形同理)。
那么,我们该如何求出每一种情况呢?这时候就要用到单调栈。
我们可以建立一个严格递增的单调栈,每当单调栈栈顶的元素被弹出,我们就求出以它为右边界的最大矩阵。可以保证这样不会遗漏正确答案。
代码
#include<bits/stdc++.h>
#define N 2000
using namespace std;
int n,m,ans1,ans2,Stack[N+5],Val[N+5],a[N+5][N+5],h[N+5][N+5];
inline char tc()
{
static char ff[100000],*A=ff,*B=ff;
return A==B&&(B=(A=ff)+fread(ff,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(int &x)
{
x=0;int f=1;char ch;
while(!isdigit(ch=tc())) if(ch=='-') f=-1;
while(x=(x<<3)+(x<<1)+ch-'0',isdigit(ch=tc()));
x*=f;
}
inline void write(int x)
{
if(x<0) putchar('-'),x=-x;
if(x>9) write(x/10);
putchar(x%10+'0');
}
int main()
{
register int i,j;
for(read(n),read(m),i=1;i<=n;++i)
for(j=1;j<=m;++j)
read(a[i][j]);
for(i=1;i<=m;++i) h[1][i]=1;
for(i=2;i<=n;++i)//预处理出以每个元素为底部的最长01柱
for(j=1;j<=m;++j)
h[i][j]=a[i-1][j]^a[i][j]?h[i-1][j]+1:1;//若其与上方的元素不同,则其可以与其上方元素构成一个01柱,否则以当前元素作为一个新的01柱
for(i=1;i<=n;++i)//枚举矩形的下界
{
int top,num;//top记录栈顶,num记录当前元素最大能达到的距离
a[i][m+1]=a[i][m]^1,h[i][m+1]=0,Stack[top=1]=1,Val[1]=h[i][1];
for(j=2;j<=m+1;++j)
{
num=j;
if(!(a[i][j]^a[i][j-1]))//比较当前元素与前面的元素的异同,若相同,则清空栈并更新ans
{
while(top)
{
ans1=max(ans1,min(Val[top],j-Stack[top]));//先记录正方形的边长,最后再将其平方
ans2=max(ans2,Val[top]*(j-Stack[top]));
--top;
}
}
while(top&&h[i][j]<=Val[top])//由于要严格满足单调递增,所以要将栈中大于等于当前元素的元素弹出
{
ans1=max(ans1,min(Val[top],j-Stack[top]));
ans2=max(ans2,Val[top]*(j-Stack[top]));
num=Stack[top--];
}
Stack[++top]=num,Val[top]=h[i][j];//将当前元素加入栈
}
}
return write(ans1*ans1),putchar('\n'),write(ans2),0;
}
待到再迷茫时回头望,所有脚印会发出光芒