PyTorch余弦学习率
前言
今天用到了PyTorch里的CosineAnnealingLR,也就是用余弦函数进行学习率的衰减。
下面讲讲定义CosineAnnealingLR这个类的对象时输入的几个参数是什么,代码示例就不放了。
正文
torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max, eta_min=0, last_epoch=-1)
-
optimizer
需要进行学习率衰减的优化器变量
-
T_max
Cosine是个周期函数嘛,这里的
T_max
就是这个周期的一半如果你将
T_max
设置为10,则学习率衰减的周期是20个epoch,其中前10个epoch从学习率的初值(也是最大值)下降到最低值,后10个epoch从学习率的最低值上升到最大值 -
eta_min
学习率衰减时的最小值,默认值为0
-
last_epoch
(上次训练)最后一个epoch的索引值,默认值为-1。
我没有测试,猜测是:如果你将其设置为20,那定义出来的scheduler的第一次step就会到第21个epoch对应的学习率。
效果
我的参数是:
# optimizer学习率初值为0.0005,100个epoch,从第1个epoch(索引为0)开始训练
scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=10, eta_min=5e-6)
效果图如下:
参考链接
本文来自博客园,作者:海_纳百川,转载请注明原文链接:https://www.cnblogs.com/chentiao/p/16788776.html,如有侵权联系删除
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 【译】Visual Studio 中新的强大生产力特性
· 【设计模式】告别冗长if-else语句:使用策略模式优化代码结构
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义