模型评价之PR曲线

与ROC和AUC密不可分,复习的时候觉得PRC也单独写一篇。

问题源自:如何判断一个数据集正负样本是均衡的?

PR和ROC在面对不平衡数据时的表现是不同的。在数据不平衡时,PR曲线是敏感的,随着正负样本比例的变化,PR会发生强烈的变化。而ROC曲线是不敏感的,其曲线能够基本保持不变。

ROC的面对不平衡数据的一致性表明其能够衡量一个模型本身的预测能力,而这个预测能力是与样本正负比例无关的。但是这个不敏感的特性使得其较难以看出一个模型在面临样本比例变化时模型的预测情况。而PRC因为对样本比例敏感,因此能够看出分类器随着样本比例变化的效果,而实际中的数据又是不平衡的,这样有助于了解分类器实际的效果和作用,也能够以此进行模型的改进。

综上,在实际学习中,我们可以使用ROC来判断两个分类器的优良,然后进行分类器的选择,然后可以根据PRC表现出来的结果衡量一个分类器面对不平衡数据进行分类时的能力,从而进行模型的改进和优化。


real world data经常会面临class imbalance问题,即正负样本比例失衡。根据计算公式可以推知,在testing set出现imbalance时ROC曲线能保持不变,而PR则会出现大变化。

PRC相对的优势

当正负样本差距不大的情况下,ROC和PR的趋势是差不多的,但是当负样本很多的时候,两者就截然不同了,ROC效果依然看似很好,但是PR上反映效果一般。解释起来也简单,假设就1个正例,100个负例,那么基本上TPR可能一直维持在100左右,然后突然降到0。这就说明PR曲线在正负样本比例悬殊较大时更能反映分类的性能。

在正负样本分布得极不均匀(highly skewed datasets)的情况下,PRC比ROC能更有效地反应分类器的好坏。

单从图a看,这两个分类器都接近完美(非常接近左上角)。图b对应着相同分类器的PR space。而从图b可以看出,这两个分类器仍有巨大的提升空间。那么原因是什么呢? 通过看Algorithm1的点 A,可以得出一些结论。首先图a和b中的点A是相同的点,只是在不同的空间里。因为TPR=Recall=TP/(TP+FN),换言之,真阳性率(TPR)和召回率(Recall)是同一个东西,只是有不同的名字。所以图a中TPR为0.8的点对应着图b中Recall为0.8的点。

假设数据集有100个positive instances。由图a中的点A,可以得到以下结论:TPR=TP/(TP+FN)=TP/actual positives=TP/100=0.8,所以TP=80由图b中的点A,可得:Precision=TP/(TP+FP)=80/(80+FP)=0.05,所以FP=1520再由图a中点A,可得:FPR=FP/(FP+TN)=FP/actual negatives=1520/actual negatives=0.1,所以actual negatives是15200。

由此,可以得出原数据集中只有100个positive instances,却有15200个negative instances!这就是极不均匀的数据集。直观地说,在点A处,分类器将1600 (1520+80)个instance分为positive,而其中实际上只有80个是真正的positive。 我们凭直觉来看,其实这个分类器并不好。但由于真正negative instances的数量远远大约positive,ROC的结果却“看上去很美”。所以在这种情况下,PRC更能体现本质。

结论: 在negative instances的数量远远大于positive instances的data set里, PRC更能有效衡量分类器的好坏。

References:Davis, Jesse, and Mark Goadrich. "The relationship between Precision-Recall and ROC curves." Proceedings of the 23rd International Conference on Machine Learning (ICML). ACM, 2006.


转载:https://blog.csdn.net/weixin_31866177/article/details/88776718

 
posted @ 2022-06-07 20:12  海_纳百川  阅读(644)  评论(0编辑  收藏  举报
本站总访问量